Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Self-healing electronics could work longer and reduce waste

Graphic by Scott White
Self-healing electronics. Microcapsules full of liquid metal sit atop a gold circuit. When the circuit is broken, the microcapsules rupture, filling in the crack and restoring the circuit.
Graphic by Scott White

Self-healing electronics. Microcapsules full of liquid metal sit atop a gold circuit. When the circuit is broken, the microcapsules rupture, filling in the crack and restoring the circuit.

Abstract:
When one tiny circuit within an integrated chip cracks or fails, the whole chip - or even the whole device - is a loss. But what if it could fix itself, and fix itself so fast that the user never knew there was a problem?

Self-healing electronics could work longer and reduce waste

Champaign, IL | Posted on December 20th, 2011

A team of University of Illinois engineers has developed a self-healing system that restores electrical conductivity to a cracked circuit in less time than it takes to blink. Led by aerospace engineering professor Scott White and materials science and engineering professor Nancy Sottos, the researchers published their results in the journal Advanced Materials.

"It simplifies the system," said chemistry professor Jeffrey Moore, a co-author of the paper. "Rather than having to build in redundancies or to build in a sensory diagnostics system, this material is designed to take care of the problem itself."

As electronic devices are evolving to perform more sophisticated tasks, manufacturers are packing as much density onto a chip as possible. However, such density compounds reliability problems, such as failure stemming from fluctuating temperature cycles as the device operates or fatigue. A failure at any point in the circuit can shut down the whole device.

"In general there's not much avenue for manual repair," Sottos said. "Sometimes you just can't get to the inside. In a multilayer integrated circuit, there's no opening it up. Normally you just replace the whole chip. It's true for a battery too. You can't pull a battery apart and try to find the source of the failure."

Most consumer devices are meant to be replaced with some frequency, adding to electronic waste issues, but in many important applications - such as instruments or vehicles for space or military functions - electrical failures cannot be replaced or repaired.

The Illinois team previously developed a system for self-healing polymer materials and decided to adapt their technique for conductive systems. They dispersed tiny microcapsules, as small as 10 microns in diameter, on top of a gold line functioning as a circuit. As a crack propagates, the microcapsules break open and release the liquid metal contained inside. The liquid metal fills in the gap in the circuit, restoring electrical flow.

"What's really cool about this paper is it's the first example of taking the microcapsule-based healing approach and applying it to a new function," White said. "Everything prior to this has been on structural repair. This is on conductivity restoration. It shows the concept translates to other things as well."

A failure interrupts current for mere microseconds as the liquid metal immediately fills the crack. The researchers demonstrated that 90 percent of their samples healed to 99 percent of original conductivity, even with a small amount of microcapsules.

The self-healing system also has the advantages of being localized and autonomous. Only the microcapsules that a crack intercepts are opened, so repair only takes place at the point of damage. Furthermore, it requires no human intervention or diagnostics, a boon for applications where accessing a break for repair is impossible, such as a battery, or finding the source of a failure is difficult, such as an air- or spacecraft.

"In an aircraft, especially a defense-based aircraft, there are miles and miles of conductive wire," Sottos said. "You don't often know where the break occurs. The autonomous part is nice - it knows where it broke, even if we don't."

Next, the researchers plan to further refine their system and explore other possibilities for using microcapsules to control conductivity. They are particularly interested in applying the microcapsule-based self-healing system to batteries, improving their safety and longevity.

This research was supported as part of the Center for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Moore, Sottos and White are also affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I. Co-authors of the paper included postdoctoral researchers Benjamin Blaiszik and Sharlotte Kramer and graduate students Martha Grady and David McIlroy.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1079


Scott White
217-333-1077

Copyright © University of Illinois College at Uraba-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Autonomic Restoration of Electrical Conductivity,” is available online:

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Videos/Movies

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Microbullet hits confirm graphene's strength: Rice University lab test material for suitability in body armor, spacecraft protection December 1st, 2014

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE