Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Demonstrating the versatility of electrochemical sensors

Figure ethylene sensor on glass.
Figure ethylene sensor on glass.

Abstract:
Imec and Holst Centre have demonstrated two new electrochemical sensors. A miniature ethylene sensor could help monitor and control fruit ripening, potentially reducing food wastage. And a multi-ion sweat sensor could allow continuous monitoring of dehydration for athletes, the elderly and the sick. These sensors enable considerable miniaturization in monitoring equipment, opening the door to novel smart packaging and body area network (BAN) applications.

Demonstrating the versatility of electrochemical sensors

Leuven, Belgium | Posted on December 18th, 2011

Ethylene sensor for fruit ripening
Ethylene is a gaseous plant hormone. Ripe fruit gives off ethylene, and many fruits ripen faster when exposed to it. Fruit producers use high concentrations of ethylene to ripen fruit in the warehouse so it is ready to eat when it reaches consumers. Inexpensive, accurate ethylene sensors would enable better control of that process. It would also allow retailers to avoid wastage by monitoring fruit ripeness.

Today's ethylene detection systems are lab-scale, expensive table-top devices, limiting their usefulness in fruit distribution and retail. The new ethylene sensor, developed by imec and Holst Centre, offers the same functionality in a single chip. To achieve this, the researchers have created a novel electrochemical cell based on an ionic liquid. Because ionic liquids cannot evaporate at room temperatures, they can be used in very thin layers in the cell. This means the cell - and hence the entire sensor - can be much smaller while delivering the same performance.

A first-generation prototype of this sensor detects ethylene down to 1 part per million (ppm), with a linear response up to 10ppm - the kind of concentrations typically used to ripen fruit artificially. Imec and Holst Centre recently produced a second-generation prototype on an inexpensive, flexible substrate, paving the way for use in smart packaging. Work is continuing to further miniaturize the sensor, to extend its sensitivity to sub-ppm for monitoring natural ripening, and to test it in real-life fruit storage and transportation conditions.

The ethylene sensor uses an electrochemical sensing mechanism. A voltage is applied between a gold electrode and a reference electrode. At the electrode surface, the ethylene is oxidized, which means that electrons are transferred from molecules in the ionic liquid to the electrode, resulting in a current. The magnitude of this current scales with the ethylene concentration in the gas phase.

Sweat monitoring
Sweat can tell us a lot about our physical condition. Measuring its acidity and the concentration of various ions gives information about a person's dehydration and electrolyte levels. However, existing solutions are bulky and only sensitive to one type of ion, making them unsuitable for monitoring a person's condition.

Different ions in sweat can be detected using electrochemical sensors that have electrodes made of different materials. Using nanotechnology and micro-fabrication techniques, the imec and Holst Centre team was able to greatly reduce the size of these electrodes. This makes it possible to combine multiple electrodes onto one chip, and hence measure multiple ion concentrations with a single device.

To demonstrate the concept, the team created a combined acidity / chloride sensor complete with integrated wireless module, allowing the sensor output to be read out on a remote unit. The whole system is small enough to fit into a handheld device. Further size reductions are possible, leading to sweat sensors that are small enough to be integrated into an on-body patch as part of a body area network (BAN). The team is also investigating ways to channel sweat from the body to the sensor electrodes to enable continuous monitoring.

Such a system would allow real-time monitoring of dehydration and electrolyte levels, helping people to balance their intake of fluid and salt. This kind of information would be useful for athletes who want to train and perform at peak levels, as well as in the care of the elderly, small children and people suffering from fever and diarrhea - all of whom can become easily dehydrated.

The sweat sensor also makes use of electrochemical sensing. It exploits so-called ion-selective electrodes, which generate a voltage with respect to a reference electrode that solely depends on the ion concentration of interest.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


Barbara Kalkis
Maestro Marketing & Public Relations
T : +1 408 996 9975
M : +1 408 529 4210

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Nanomedicine

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Sensors

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Discoveries

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Announcements

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Food/Agriculture/Supplements

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

A Deep tech startup is disrupting dairy industry in Chennai Demo Day at IIT-Madras Research Park February 20th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Sports

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project