Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Yale engineers making solar power more efficient

Abstract:
Innovations by a team of Yale University researchers could lead to improvements in basic solar power technology that result in lower-cost, higher-efficiency photovoltaic systems.

Yale engineers making solar power more efficient

New Haven, CT | Posted on December 8th, 2011

Photovoltaics (PV) directly convert sunlight into electricity. PV systems can be arrayed on rooftops to generate electricity for entire buildings, among other uses. Less expensive, more efficient systems could encourage broader use of this clean energy technology.

The Yale team, which includes both engineers and applied physicists, has developed a new way of guiding and channeling electrons within hybrid organic-inorganic PV devices by better controlling the structure and alignment of the materials in the system. This improves efficiency by maximizing the amount of light that is successfully converted into electricity.

"The key here is controlling the structure of the system on multiple levels, or length scales, and doing it in a manner that is conducive to fabrication of devices over large areas," said Chinedum O. Osuji, a Yale engineering professor and a principal investigator behind research recently published online in the journal Advanced Materials. Lisa D. Pfefferle and Andre D. Taylor of Yale's Department of Chemical and Environmental Engineering and Sohrab Ismail-Beigi of the Department of Applied Physics also served as principal investigators.

In their current form, hybrid organic-inorganic PV devices convert only a small fraction of light into energy. This is largely due to the poorly ordered structure of the active materials now used, resulting in a convoluted path for the flow of electrons. The Yale team has devised ways of more efficiently channeling the electrons through the system, involving aligned arrays of polymer-coated nanowires that can act as the active material for a solar cell. The application of magnetic fields aligns the nanowires, creating more direct pathways for charge transport in the device.

"We are currently working on building and systematically testing actual solar cells using these highly ordered materials" Osuji said.

Other authors include: Shanju Zhang, Candice I. Pelligra, Gayatri Keskar, Pawel W. Majewski, all of the Department of Chemical and Environmental Engineering at the Yale School of Engineering & Applied Science; and Jie Jiang of the Department of Applied Physics, also at Yale School of Engineering & Applied Science.

Support for the research was provided by the National Science Foundation.

####

For more information, please click here

Contacts:
Eric Gershon
203-432-8555

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to Chinedum O. Osuji's faculty page:

Related News Press

News and information

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Nanoelectronics

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Discoveries

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Announcements

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic