Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Yale engineers making solar power more efficient

Abstract:
Innovations by a team of Yale University researchers could lead to improvements in basic solar power technology that result in lower-cost, higher-efficiency photovoltaic systems.

Yale engineers making solar power more efficient

New Haven, CT | Posted on December 8th, 2011

Photovoltaics (PV) directly convert sunlight into electricity. PV systems can be arrayed on rooftops to generate electricity for entire buildings, among other uses. Less expensive, more efficient systems could encourage broader use of this clean energy technology.

The Yale team, which includes both engineers and applied physicists, has developed a new way of guiding and channeling electrons within hybrid organic-inorganic PV devices by better controlling the structure and alignment of the materials in the system. This improves efficiency by maximizing the amount of light that is successfully converted into electricity.

"The key here is controlling the structure of the system on multiple levels, or length scales, and doing it in a manner that is conducive to fabrication of devices over large areas," said Chinedum O. Osuji, a Yale engineering professor and a principal investigator behind research recently published online in the journal Advanced Materials. Lisa D. Pfefferle and Andre D. Taylor of Yale's Department of Chemical and Environmental Engineering and Sohrab Ismail-Beigi of the Department of Applied Physics also served as principal investigators.

In their current form, hybrid organic-inorganic PV devices convert only a small fraction of light into energy. This is largely due to the poorly ordered structure of the active materials now used, resulting in a convoluted path for the flow of electrons. The Yale team has devised ways of more efficiently channeling the electrons through the system, involving aligned arrays of polymer-coated nanowires that can act as the active material for a solar cell. The application of magnetic fields aligns the nanowires, creating more direct pathways for charge transport in the device.

"We are currently working on building and systematically testing actual solar cells using these highly ordered materials" Osuji said.

Other authors include: Shanju Zhang, Candice I. Pelligra, Gayatri Keskar, Pawel W. Majewski, all of the Department of Chemical and Environmental Engineering at the Yale School of Engineering & Applied Science; and Jie Jiang of the Department of Applied Physics, also at Yale School of Engineering & Applied Science.

Support for the research was provided by the National Science Foundation.

####

For more information, please click here

Contacts:
Eric Gershon
203-432-8555

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to Chinedum O. Osuji's faculty page:

Related News Press

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Nanoelectronics

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Discoveries

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project