Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Microscope at Brookhaven Lab Promises Unprecedented Experimental Opportunities in Materials Science

Dan Fischer (left) and Raymond Browning show off the prototype of the Vector Potential Photoelectron Microscope.
Dan Fischer (left) and Raymond Browning show off the prototype of the Vector Potential Photoelectron Microscope.

Abstract:
A new class of x-ray photoelectron spectroscopic microscope has been developed at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory. The microscope will be used for advanced research on a wide range of technologically important materials systems. This new class of microscope was invented by Raymond Browning, of R. Browning Consultants and funded by National Institute of Standards and Technology (NIST) Small Business Innovation and Research (SBIR) contracts. A prototype of the new instrument, a Vector Potential Photoelectron Microscope (VPPEM), has been built in collaboration with the NIST Synchrotron Methods Group at the Laboratory's National Synchrotron Light Source (NSLS).

New Microscope at Brookhaven Lab Promises Unprecedented Experimental Opportunities in Materials Science

Upton, NY | Posted on November 29th, 2011

The new microscope uses a unique imaging method, and opens up many novel experimental possibilities. According to Browning, VPPEM potentially has a thousand times greater spatial resolution than current technology can provide, and is expected to be the world's most advanced general purpose x-ray photoelectron microscope when combined with NIST's beamline at Brookhaven's new light source, NSLS-II. Currently under construction, NSLS-II will be the most advanced synchrotron light source in the world when it begins operating by 2015.

VPPEM uses x-ray photoelectron spectroscopy to image the composition and chemistry of surfaces. These chemical properties determine the technologically valuable properties of a material, such as resistance to corrosion, usefulness in fuel cells, and also strength, and hardness. Such information obtained from VPPEM images can be used for semiconductor device defect analysis, inspection of surfaces used in medical practice, organic photovoltaic materials characterization, novel materials development, and general materials surface and interface analysis.

The VPPEM is unique because it uses a strong vector potential field created by a superconducting coil rather than a traditional lens system to magnify a sample. The vector potential field, which is a consequence of the electrical current flowing in the coil, forms a symmetric circular field in the center of the coil. VPPEM uses this symmetric field as a two-dimensional map, or spatial reference, for imaging samples.

Browning explained, "Unlike other microscopes, VPPEM does not 'focus' on the sample with a lens system, but magnifies the effects of the vector potential field on the photoelectrons emitted from the sample. When a sample's surface is irradiated with synchrotron-generated x-rays, the characteristic photoelectron energies emitted from surface atoms give a wealth of information about the type of atoms, chemical bonding, and, to a certain extent, the atomic structure of a material. At present, the VPPEM has successfully imaged uncoated silk, magnetic steel wool, gold mesh, and micron-sized tungsten wires."

The VPPEM's magnifying action has several advantages over conventional electron microscopy. For instance, the sample can be located at different places in the vector potential field and still be imaged. The sample is always in focus because there is no imaging lens to adjust. Relatively large, uneven samples can be imaged in this way, with little sample preparation.

NIST Synchrotron Methods Group Leader Dan Fischer, who has been helping to develop and test the prototype microscope, said, "Since it automatically focuses, it's easy to use, and no knowledge of synchrotrons is necessary. Because there is a long working distance between the lens and the sample, other probes and equipment can be placed in the VPPEM, as needed. When fully developed, this microscope will be a flagship instrument in NSLS-II that will enable nondestructive, three-dimensional mapping of nanomaterials and nanodevices."

Browning holds three patents, and has another three patents pending on the VPPEM. These patents are available for licensing. "I am looking for an industrial partner to develop the microscope and commercialize it," Browning said.

The development of the VPPEM was funded under several NIST SBIR awards with infrastructure support from DOE's Office of Science. Browning and NIST used beamline U4A, a dedicated instrumental development beamline supported by the NSLS for the project, and NSLS staff helped in constructing the equipment and operating the beamline. The Department's Office of Science is the single largest supporter of basic research in the physical sciences in the Unites States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/newsroom), or follow Brookhaven Lab on Twitter (twitter.com/BrookhavenLab).

For more information, please click here

Contacts:
Diane Greenberg

(631) 344-2347
or
Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Imaging

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Patents/IP/Tech Transfer/Licensing

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project