Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rice chemists cram 2 million nanorods into single cancer cell: Breakthrough in loading gold nanorods into cells could lead to new cancer treatment

Rice University's Leonid Vigderman (left) and Eugene Zubarev have found a way to load more than 2 million tiny gold particles called nanorods into a single cancer cell.
CREDIT: Jeff Fitlow/Rice University
Rice University's Leonid Vigderman (left) and Eugene Zubarev have found a way to load more than 2 million tiny gold particles called nanorods into a single cancer cell.

CREDIT: Jeff Fitlow/Rice University

Abstract:
Rice University chemists have found a way to load more than 2 million tiny gold particles called nanorods into a single cancer cell. The breakthrough could speed development of cancer treatments that would use nanorods like tiny heating elements to cook tumors from the inside.

Rice chemists cram 2 million nanorods into single cancer cell: Breakthrough in loading gold nanorods into cells could lead to new cancer treatment

Houston, TX | Posted on November 16th, 2011

The research appears online this week in the chemical journal Angewandte Chemie International Edition.

"The breast cancer cells that we studied were so laden with gold nanorods that their masses increased by an average of about 13 percent," said study leader Eugene Zubarev, associate professor of chemistry at Rice. "Remarkably, the cells continued to function normally, even with all of this gold inside them."

Though the ultimate goal is to kill cancer, Zubarev said the strategy is to deliver nontoxic particles that become deadly only when they are activated by a laser.
The nanorods, which are about the size of a small virus, can harvest and convert otherwise harmless light into heat. But because each nanorod radiates miniscule heat, many are needed to kill a cell.

"Ideally, you'd like to use a low-power laser to minimize the risks to healthy tissue, and the more particles you can load inside the cell, the lower you can set the power level and irradiation time," said Zubarev, an investigator at Rice's BioScience Research Collaborative (BRC).

Unfortunately, scientists who study gold nanorods have found it difficult to load large numbers of particles into living cells. For starters, nanorods are pure gold, which means they won't dissolve in solution unless they are combined with some kind of polymer or surfactant. The most commonly used of these is cetyltrimethylammonium bromide, or CTAB, a soapy chemical often used in hair conditioner.

CTAB is a key ingredient in the production of nanorods, so scientists have often relied upon it to make nanorods soluble in water. CTAB does this job by coating the surface of the nanorods in much the same way that soap envelopes and dissolves droplets of grease in dishwater. CTAB-encased nanorods also have a positive charge on their surfaces, which encourages cells to ingest them. Unfortunately, CTAB is also toxic, which makes it problematic for biomedical applications.

In the new research, Zubarev, Rice graduate student Leonid Vigderman and former graduate student Pramit Manna, now at Applied Materials Inc., describe a method to completely replace CTAB with a closely related molecule called MTAB that has two additional atoms attached at one end.

The additional atoms -- one sulfur and one hydrogen -- allow MTAB to form a permanent chemical bond with gold nanorods. In contrast, CTAB binds more weakly to nanorods and has a tendency to leak into surrounding media from time to time, which is believed to be the underlying cause of CTAB-encased nanorod toxicity.

It took Zubarev, Vigderman and Manna several years to identify the optimal strategy to synthesize MTAB and substitute it for CTAB on the surface of the nanorods. In addition, they developed a purification process that can completely remove all traces of CTAB from a solution of nanorods.

The research was funded by the National Science Foundation.

Rice's BRC is an innovative space where scientists and educators from Rice and other institutions in the Texas Medical Center work together to perform leading research that benefits human medicine and health.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The report in Angewandte Chemie is available at:

Related News Press

News and information

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Videos/Movies

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

New particle-sorting method breaks speed records: Discovery could lead to new ways of detecting cancer cells or purifying contaminated water July 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nanomedicine

New imaging agent provides better picture of the gut July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Discoveries

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Announcements

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE