Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Rice chemists cram 2 million nanorods into single cancer cell: Breakthrough in loading gold nanorods into cells could lead to new cancer treatment

Rice University's Leonid Vigderman (left) and Eugene Zubarev have found a way to load more than 2 million tiny gold particles called nanorods into a single cancer cell.
CREDIT: Jeff Fitlow/Rice University
Rice University's Leonid Vigderman (left) and Eugene Zubarev have found a way to load more than 2 million tiny gold particles called nanorods into a single cancer cell.

CREDIT: Jeff Fitlow/Rice University

Abstract:
Rice University chemists have found a way to load more than 2 million tiny gold particles called nanorods into a single cancer cell. The breakthrough could speed development of cancer treatments that would use nanorods like tiny heating elements to cook tumors from the inside.

Rice chemists cram 2 million nanorods into single cancer cell: Breakthrough in loading gold nanorods into cells could lead to new cancer treatment

Houston, TX | Posted on November 16th, 2011

The research appears online this week in the chemical journal Angewandte Chemie International Edition.

"The breast cancer cells that we studied were so laden with gold nanorods that their masses increased by an average of about 13 percent," said study leader Eugene Zubarev, associate professor of chemistry at Rice. "Remarkably, the cells continued to function normally, even with all of this gold inside them."

Though the ultimate goal is to kill cancer, Zubarev said the strategy is to deliver nontoxic particles that become deadly only when they are activated by a laser.
The nanorods, which are about the size of a small virus, can harvest and convert otherwise harmless light into heat. But because each nanorod radiates miniscule heat, many are needed to kill a cell.

"Ideally, you'd like to use a low-power laser to minimize the risks to healthy tissue, and the more particles you can load inside the cell, the lower you can set the power level and irradiation time," said Zubarev, an investigator at Rice's BioScience Research Collaborative (BRC).

Unfortunately, scientists who study gold nanorods have found it difficult to load large numbers of particles into living cells. For starters, nanorods are pure gold, which means they won't dissolve in solution unless they are combined with some kind of polymer or surfactant. The most commonly used of these is cetyltrimethylammonium bromide, or CTAB, a soapy chemical often used in hair conditioner.

CTAB is a key ingredient in the production of nanorods, so scientists have often relied upon it to make nanorods soluble in water. CTAB does this job by coating the surface of the nanorods in much the same way that soap envelopes and dissolves droplets of grease in dishwater. CTAB-encased nanorods also have a positive charge on their surfaces, which encourages cells to ingest them. Unfortunately, CTAB is also toxic, which makes it problematic for biomedical applications.

In the new research, Zubarev, Rice graduate student Leonid Vigderman and former graduate student Pramit Manna, now at Applied Materials Inc., describe a method to completely replace CTAB with a closely related molecule called MTAB that has two additional atoms attached at one end.

The additional atoms -- one sulfur and one hydrogen -- allow MTAB to form a permanent chemical bond with gold nanorods. In contrast, CTAB binds more weakly to nanorods and has a tendency to leak into surrounding media from time to time, which is believed to be the underlying cause of CTAB-encased nanorod toxicity.

It took Zubarev, Vigderman and Manna several years to identify the optimal strategy to synthesize MTAB and substitute it for CTAB on the surface of the nanorods. In addition, they developed a purification process that can completely remove all traces of CTAB from a solution of nanorods.

The research was funded by the National Science Foundation.

Rice's BRC is an innovative space where scientists and educators from Rice and other institutions in the Texas Medical Center work together to perform leading research that benefits human medicine and health.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The report in Angewandte Chemie is available at:

Related News Press

News and information

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Videos/Movies

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Nanomedicine

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Chirality in 'real-time' January 14th, 2019

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-ANG3 for Treatment of Dyslipidemias and Metabolic Diseases January 7th, 2019

Discoveries

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

January 18th, 2019

Announcements

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project