Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stanford engineers use nanophotonics to reshape on-chip computer data transmission: New nanoscale light-emitting diode is thousands of times more energy efficient that laser-based devices and ultrafast; could transform computer data transmission at the chip level

This illustration shows how a single nanophotonic single-mode LED is constructed.

Credit: Gary Shambat, Stanford School of Engineering
This illustration shows how a single nanophotonic single-mode LED is constructed.

Credit: Gary Shambat, Stanford School of Engineering

Abstract:
A team at Stanford's School of Engineering has demonstrated an ultrafast nanoscale light emitting diode (LED) that is orders of magnitude lower in power consumption than today's laser-based systems and able to transmit data at 10 billion bits per second. The researchers say it is a major step forward in providing a practical ultrafast, low-power light sources for on-chip computer data transmission.

Stanford engineers use nanophotonics to reshape on-chip computer data transmission: New nanoscale light-emitting diode is thousands of times more energy efficient that laser-based devices and ultrafast; could transform computer data transmission at the chip level

Stanford, CA | Posted on November 15th, 2011

Stanford's Jelena Vuckovic, an associate professor of electrical engineering and the study's senior author, and first author Gary Shambat, a doctoral candidate in electrical engineering, announced their device in paper to be published November 15 in the journal Nature Communications.

Vuckovic had earlier this year produced a nanoscale laser that was similarly efficient and fast, but that device operated only at temperatures below 150 Kelvin, about 190 degrees below zero Fahrenheit, making them impractical for commercial use. The new device operates at room temperature and could, therefore, represent an important step toward next-generation computer processors.

"Low-power, electrically controlled light sources are vital for next generation optical systems to meet the growing energy demands of the computer industry," said Vuckovic. "This moves us in that direction significantly."

Single-Mode Light

The LED in question is a "single-mode LED," a special type of diode that emits light more or less at a single wavelength, very similar to a laser.

"Traditionally, engineers have thought only lasers can communicate at high data rates and ultralow power," said Shambat. "Our nanophotonic, single-mode LED can perform all the same tasks as lasers, but at much lower power."

Nanophotonics is key to the technology. In the heart of their device, the engineers have inserted little islands of the material indium arsenide, which, when pulsed with electricity, produce light. These islands are surrounded by photonic crystal - an array of tiny holes etched in a semiconductor. The photonic crystal serves as a mirror that bounces the light toward the center of the device, confining it inside the LED and forcing it to resonate at a single frequency.

"In other words, the light becomes single-mode," said Shambat.

"Without these nanophotonic ingredients - the 'quantum dots' and the photonic crystal - it is impossible to make an LED efficient, single-mode and fast all at the same time," said Vuckovic.

Engineering Ingenuity

The new device includes a bit of engineering ingenuity, too. Existing devices are actually two devices, a laser coupled with an external modulator. Both devices require electricity. Vuckovic's diode combines light emission and modulation functions into one device that drastically reduces energy consumption.

On average, the new LED device transmits data at 0.25 femto-Joules per bit of data. By comparison, today's typical 'low' power laser device requires about 500 femto-Joules to transmit a single bit. Some technologies consume as much as one pico-Joule per bit.

"Our device is 2000 to 4000 times more energy efficient than best devices in use today" said Vuckovic.

Stanford Professor James Harris, former PhD student Bryan Ellis, and doctoral candidates Arka Majumdar, Jan Petykiewicz and Tomas Sarmiento also contributed to this research.

This article was written by Andrew Myers, the associate director of communications at the Stanford School of Engineering.

####

For more information, please click here

Contacts:
Andrew Myers

650-736-2241

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Display technology/LEDs/SS Lighting/OLEDs

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

Chip Technology

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

Optical computing/ Photonic computing

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

Solution-grown nanowires make the best lasers April 14th, 2015

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Building shape inspires new material discovery March 24th, 2015

Discoveries

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Announcements

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Photonics/Optics/Lasers

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE