Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stanford engineers use nanophotonics to reshape on-chip computer data transmission: New nanoscale light-emitting diode is thousands of times more energy efficient that laser-based devices and ultrafast; could transform computer data transmission at the chip level

This illustration shows how a single nanophotonic single-mode LED is constructed.

Credit: Gary Shambat, Stanford School of Engineering
This illustration shows how a single nanophotonic single-mode LED is constructed.

Credit: Gary Shambat, Stanford School of Engineering

Abstract:
A team at Stanford's School of Engineering has demonstrated an ultrafast nanoscale light emitting diode (LED) that is orders of magnitude lower in power consumption than today's laser-based systems and able to transmit data at 10 billion bits per second. The researchers say it is a major step forward in providing a practical ultrafast, low-power light sources for on-chip computer data transmission.

Stanford engineers use nanophotonics to reshape on-chip computer data transmission: New nanoscale light-emitting diode is thousands of times more energy efficient that laser-based devices and ultrafast; could transform computer data transmission at the chip level

Stanford, CA | Posted on November 15th, 2011

Stanford's Jelena Vuckovic, an associate professor of electrical engineering and the study's senior author, and first author Gary Shambat, a doctoral candidate in electrical engineering, announced their device in paper to be published November 15 in the journal Nature Communications.

Vuckovic had earlier this year produced a nanoscale laser that was similarly efficient and fast, but that device operated only at temperatures below 150 Kelvin, about 190 degrees below zero Fahrenheit, making them impractical for commercial use. The new device operates at room temperature and could, therefore, represent an important step toward next-generation computer processors.

"Low-power, electrically controlled light sources are vital for next generation optical systems to meet the growing energy demands of the computer industry," said Vuckovic. "This moves us in that direction significantly."

Single-Mode Light

The LED in question is a "single-mode LED," a special type of diode that emits light more or less at a single wavelength, very similar to a laser.

"Traditionally, engineers have thought only lasers can communicate at high data rates and ultralow power," said Shambat. "Our nanophotonic, single-mode LED can perform all the same tasks as lasers, but at much lower power."

Nanophotonics is key to the technology. In the heart of their device, the engineers have inserted little islands of the material indium arsenide, which, when pulsed with electricity, produce light. These islands are surrounded by photonic crystal - an array of tiny holes etched in a semiconductor. The photonic crystal serves as a mirror that bounces the light toward the center of the device, confining it inside the LED and forcing it to resonate at a single frequency.

"In other words, the light becomes single-mode," said Shambat.

"Without these nanophotonic ingredients - the 'quantum dots' and the photonic crystal - it is impossible to make an LED efficient, single-mode and fast all at the same time," said Vuckovic.

Engineering Ingenuity

The new device includes a bit of engineering ingenuity, too. Existing devices are actually two devices, a laser coupled with an external modulator. Both devices require electricity. Vuckovic's diode combines light emission and modulation functions into one device that drastically reduces energy consumption.

On average, the new LED device transmits data at 0.25 femto-Joules per bit of data. By comparison, today's typical 'low' power laser device requires about 500 femto-Joules to transmit a single bit. Some technologies consume as much as one pico-Joule per bit.

"Our device is 2000 to 4000 times more energy efficient than best devices in use today" said Vuckovic.

Stanford Professor James Harris, former PhD student Bryan Ellis, and doctoral candidates Arka Majumdar, Jan Petykiewicz and Tomas Sarmiento also contributed to this research.

This article was written by Andrew Myers, the associate director of communications at the Stanford School of Engineering.

####

For more information, please click here

Contacts:
Andrew Myers

650-736-2241

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Display technology/LEDs/SS Lighting/OLEDs

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Towards a better screen; New molecules promise cheaper, more efficient OLED displays August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Chip Technology

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Optical computing/Photonic computing

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic