Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Stanford engineers use nanophotonics to reshape on-chip computer data transmission: New nanoscale light-emitting diode is thousands of times more energy efficient that laser-based devices and ultrafast; could transform computer data transmission at the chip level

This illustration shows how a single nanophotonic single-mode LED is constructed.

Credit: Gary Shambat, Stanford School of Engineering
This illustration shows how a single nanophotonic single-mode LED is constructed.

Credit: Gary Shambat, Stanford School of Engineering

Abstract:
A team at Stanford's School of Engineering has demonstrated an ultrafast nanoscale light emitting diode (LED) that is orders of magnitude lower in power consumption than today's laser-based systems and able to transmit data at 10 billion bits per second. The researchers say it is a major step forward in providing a practical ultrafast, low-power light sources for on-chip computer data transmission.

Stanford engineers use nanophotonics to reshape on-chip computer data transmission: New nanoscale light-emitting diode is thousands of times more energy efficient that laser-based devices and ultrafast; could transform computer data transmission at the chip level

Stanford, CA | Posted on November 15th, 2011

Stanford's Jelena Vuckovic, an associate professor of electrical engineering and the study's senior author, and first author Gary Shambat, a doctoral candidate in electrical engineering, announced their device in paper to be published November 15 in the journal Nature Communications.

Vuckovic had earlier this year produced a nanoscale laser that was similarly efficient and fast, but that device operated only at temperatures below 150 Kelvin, about 190 degrees below zero Fahrenheit, making them impractical for commercial use. The new device operates at room temperature and could, therefore, represent an important step toward next-generation computer processors.

"Low-power, electrically controlled light sources are vital for next generation optical systems to meet the growing energy demands of the computer industry," said Vuckovic. "This moves us in that direction significantly."

Single-Mode Light

The LED in question is a "single-mode LED," a special type of diode that emits light more or less at a single wavelength, very similar to a laser.

"Traditionally, engineers have thought only lasers can communicate at high data rates and ultralow power," said Shambat. "Our nanophotonic, single-mode LED can perform all the same tasks as lasers, but at much lower power."

Nanophotonics is key to the technology. In the heart of their device, the engineers have inserted little islands of the material indium arsenide, which, when pulsed with electricity, produce light. These islands are surrounded by photonic crystal - an array of tiny holes etched in a semiconductor. The photonic crystal serves as a mirror that bounces the light toward the center of the device, confining it inside the LED and forcing it to resonate at a single frequency.

"In other words, the light becomes single-mode," said Shambat.

"Without these nanophotonic ingredients - the 'quantum dots' and the photonic crystal - it is impossible to make an LED efficient, single-mode and fast all at the same time," said Vuckovic.

Engineering Ingenuity

The new device includes a bit of engineering ingenuity, too. Existing devices are actually two devices, a laser coupled with an external modulator. Both devices require electricity. Vuckovic's diode combines light emission and modulation functions into one device that drastically reduces energy consumption.

On average, the new LED device transmits data at 0.25 femto-Joules per bit of data. By comparison, today's typical 'low' power laser device requires about 500 femto-Joules to transmit a single bit. Some technologies consume as much as one pico-Joule per bit.

"Our device is 2000 to 4000 times more energy efficient than best devices in use today" said Vuckovic.

Stanford Professor James Harris, former PhD student Bryan Ellis, and doctoral candidates Arka Majumdar, Jan Petykiewicz and Tomas Sarmiento also contributed to this research.

This article was written by Andrew Myers, the associate director of communications at the Stanford School of Engineering.

####

For more information, please click here

Contacts:
Andrew Myers

650-736-2241

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Chip Technology

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Optical Computing

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanosheets and nanowires April 1st, 2014

Unavoidable disorder used to build nanolaser March 25th, 2014

A mathematical equation that explains the behavior of nanofoams March 22nd, 2014

Discoveries

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Announcements

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Photonics/Optics/Lasers

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE