Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanowires could be solution for high performance solar cells

InGaAs solar cells Graphic by Xiuling Li

InGaAs: Solar cells (bottom) made with arrays of nanowires. Engineers can tune the performance by using nanowires of differing composition and thickness (top).
InGaAs solar cells Graphic by Xiuling Li

InGaAs: Solar cells (bottom) made with arrays of nanowires. Engineers can tune the performance by using nanowires of differing composition and thickness (top).

Abstract:
Tiny wires could help engineers realize high-performance solar cells and other electronics, according to University of Illinois researchers.

Nanowires could be solution for high performance solar cells

Champaign, IL | Posted on November 8th, 2011

The research group, led by electrical and computer engineering professor Xiuling Li, developed a technique to integrate compound semiconductor nanowires on silicon wafers, overcoming key challenges in device production. The team published its results in the journal Nano Letters.

Semiconductors in the III-V (pronounced three-five) group are promising for devices that change light to electricity and vice-versa, such as high-end solar cells or lasers. However, they don't integrate with silicon seamlessly, which is a problem since silicon is the most ubiquitous device platform. Each material has a specific distance between the atoms in the crystal, known as the lattice constant.

"The biggest challenge has been that III-V semiconductors and silicon do not have the same lattice constants," Li said. "They cannot be stacked on top of each other in a straightforward way without generating dislocations, which can be thought of as atomic scale cracks."

When the crystal lattices don't line up, there is a mismatch between the materials. Researchers usually deposit III-V materials on top of silicon wafers in a thin film that covers the wafer, but the mismatch causes strain and introduces defects, degrading the device performance.

Instead of a thin film, the Illinois team grew a densely packed array of nanowires, tiny strands of III-V semiconductor that grow up vertically from the silicon wafer.

"The nanowire geometry offers a lot more freedom from lattice-matching restrictions by dissipating the mismatch strain energy laterally through the sidewalls," Li said.

The researchers found conditions for growing nanowires of various compositions of the III-V semiconductor indium gallium arsenide. Their methodology has the advantages of using a common growth technique without the need for any special treatments or patterning on the silicon wafer or the metal catalysts that are often needed for such reactions.

The nanowire geometry provides the additional benefit of enhancing solar cell performance through greater light absorption and carrier collection efficiency. The nanowire approach also uses less material than thin films, reducing the cost.

"This work represents the first report on ternary semiconductor nanowire arrays grown on silicon substrates, that are truly epitaxial, controllable in size and doping, high aspect ratio, non-tapered, and broadly tunable in energy for practical device integration," said Li, who is affiliated with the Micro and Nanotechnology Laboratory, the Frederick Seitz Materials Research Laboratory and the Beckman Institute for Advanced Science and Technology at the U. of I.

Li believes the nanowire approach could be applied broadly to other semiconductors, enabling other applications that have been deterred by mismatch concerns. Next, Li and her group hope soon to demonstrate nanowire-based multi-junction tandem solar cells with high quality and efficiency.

The Department of Energy and the National Science Foundation supported this work. Other faculty involved in the project are materials science and engineering professors Jian-Min Zuo and John A. Rogers at the U. of I., and professor Cun-Zeng Ning, at Arizona State University. Jae Cheol Shin, a former postdoctoral researcher with Li, is the first author.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Discoveries

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Research partnerships

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Solar/Photovoltaic

From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE