Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Can metals remember their shape at nanoscale, too? How nickel-titanium nanometric-size particles change back to their memorised shape

Abstract:
University of Constance physicists Daniel Mutter and Peter Nielaba have visualised changes in shape memory materials down to the nanometric scale in an article about to be published in EPJ B¹.

Can metals remember their shape at nanoscale, too? How nickel-titanium nanometric-size particles change back to their memorised shape

Heidelberg, Germany | Posted on November 8th, 2011

Metallic alloys can be stretched or compressed in such a way that they stay deformed once the strain on the material has been released. Only shape memory alloys, however, can return to their original shape after being heated above a specific temperature.

For the first time, the authors determine the absolute values of temperatures at which shape memory nanospheres start changing back to their memorised shape - undergoing so-called structural phase transition, which depends on the size of particles studied. To achieve this result, they performed a computer simulation using nanoparticles with diameters between 4 and 17 nm made of an alloy of equal proportions of nickel and titanium.

To date, research efforts to establish structural phase transition temperature have mainly been experimental. Thanks to a computerised method known as molecular dynamics simulation, the authors were able to visualise the transformation process of the material during the transition. As the temperature increased, they showed that the material's atomic-scale crystal structure shifted from a lower to a higher level of symmetry. They found that the strong influence of the energy difference between the low- and high-symmetry structure at the surface of the nanoparticle, which differed from that in its interior, could explain the transition.

Most of the prior work on shape memory materials was in macroscopic scale systems and used for applications such as dental braces, stents or oil temperature-regulating devices for bullet trains. Potential new applications include the creation of nanoswitches, where laser irradiation could heat up such shape memory material, triggering a change in its length that would, in turn, function as a switch.

Reference
1. Mutter D, Nielaba P (2011). Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles. European Physical Journal B (EPJ B) DOI 10.1140/epjb/e2011-20661-4

####

For more information, please click here

Contacts:
Joan Robinson

49-622-148-78130

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Abstract of the Study: Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles

Related News Press

News and information

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Discoveries

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Materials/Metamaterials

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Properties of Coatings Used in Electrical Insulators Modified by Iranian Researchers April 14th, 2014

Graphene Supermarket to offer HDPlas™ by Haydale, a High-Performance Graphene Material April 10th, 2014

Announcements

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE