Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Supercomputers Accelerate Development of Advanced Materials: Berkeley Lab helps develop a Google-like search engine for materials research

Berkeley Lab scientist Kristin Persson co-founded the Materials Project, to accelerate discovery of new materials. (Photo by Roy Kaltschmidt/Berkeley Lab)
Berkeley Lab scientist Kristin Persson co-founded the Materials Project, to accelerate discovery of new materials.

(Photo by Roy Kaltschmidt/Berkeley Lab)

Abstract:
New materials are crucial to building a clean energy economy—for everything from batteries to photovoltaics to lighter weight vehicles—but today the development cycle is too slow: around18 years from conception to commercialization. To speed up this process, a team of researchers from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT) teamed up to develop a new tool, called the Materials Project, which launches this month.

Supercomputers Accelerate Development of Advanced Materials: Berkeley Lab helps develop a Google-like search engine for materials research

Berkeley, CA | Posted on November 8th, 2011

"Our vision is for this tool to become a dynamic ‘Google' of material properties, which continually grows and changes as more users come on board to analyze the results, verify against experiments and increase their knowledge," says Kristin Persson, a Berkeley Lab chemist and one of the founding scientists behind the Materials Project. "So many scientists can benefit from this type of screening. Considering the demand for innovative clean energy technology we needed most of these materials yesterday."

The Materials Project employs an approach to materials science inspired by genomics. But rather than sequencing genomes, researchers are using supercomputers to characterize the properties of inorganic compounds, such as their stability, voltage, capacity, and oxidation state. The results are then organized into a database with a user-friendly, web interface that gives all researchers free and easy access and searching.

"First-principles calculations have reached the point of accuracy where many materials properties, relevant for photovoltaics, batteries and thermoelectrics, can be reliably predicted," says Gerbrand Ceder, an MIT professor of materials science and engineering and founder of the Materials Project.

A better battery—one that is cheaper and has more power and energy while being safe—could finally make possible the dream of an electric vehicle reaching performance and cost parity with a gasoline-powered car. But beyond batteries, novel materials could transform a host of other industries, from food packaging to buildings. For example, the Materials Project is working with with several entities interested in making stronger, corrosion-resistant lightweight aluminum alloys, which could make possible lighter vehicles and airplanes.

"Materials innovation today is largely done by intuition, which is based on the experience of single investigators," says Persson, who works in Berkeley Lab's Environmental Energy Technologies Division. "The lack of comprehensive knowledge of materials, organized for easy analysis and rational design, is one of the foremost reasons for the long process time in materials discovery."

President Obama has recognized the importance of advanced materials with his announcement in June of the Materials Genome Initiative "to double the speed with which we discover, develop, and manufacture new materials." Many of the concepts of that initiative were inspired by the Materials Project, Persson said.

With the help of supercomputers at the Department of Energy's National Energy Research Scientific Computing Center (NERSC), the Berkeley Lab Lawrencium cluster and systems at the University of Kentucky, the Materials Project database currently contains the structural and energetic properties of more than 15,000 inorganic compounds, and up to hundreds more are added every day. Researchers are continuously adding new properties to enable true rational design of new materials for a wide variety of applications.

A Gateway For Science

To build the Materials Project web tool, the team approached computer systems engineers at NERSC who have extensive experience building web-based interfaces and technologies—called science gateways—that make it easier for scientists to access computational resources and share data with the rest of their community.

"The Materials Project represents the next generation of the original Materials Genome Project, developed by Ceder's team at MIT," says Shreyas Cholia, a NERSC computer engineer who helped develop the Materials Project tool. "The core science team worked with developers from NERSC and Berkeley Lab's Computational Research Division to expand this tool into a more permanent, flexible and scalable data service built on top of rich modern web interfaces and state-of-the-art NoSQL database technology."

The Materials Project, which will be hosted on NERSC's science gateway infrastructure, was developed with support from the Department of Energy and a Laboratory Directed Research and Development grant from Berkeley Lab.

In addition to Persson and Cholia, other Berkeley Lab contributors to this project include Michael Kocher, Daniel Gunter, Annette Greiner, David Skinner and David Bailey. MIT collaborators include Gerbrand Ceder, Shyue Ping Ong, Anubhav Jain, Geoffroy Hautier and Evgueni Chtykov.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
NERSC Contact:
Linda Vu
(510) 495-2402

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Chemistry

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Laboratories

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Connecting the (Nano) Dots: NIST Says Big-Picture Thinking Can Advance Nanoparticle Manufacturing August 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project