Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoprinting on Patterned Surfaces

http://dx.doi.org/10.1002/adma.201102834|J. Thomas et al., Adv. Mater., ; DOI: 10.1002/adma.201102834
http://dx.doi.org/10.1002/adma.201102834|J. Thomas et al., Adv. Mater., ; DOI: 10.1002/adma.201102834

Abstract:
Nanosized features can easily be printed accurately onto an already patterned surface, using a new technique called nanoimprinting by melt processing developed by US scientists.

Nanoprinting on Patterned Surfaces

Germany | Posted on October 21st, 2011

Commercial production of devices based on nanotechnology demands that tiny, complex components be fabricated on a mass scale, at low cost, and in few steps. Nanoimprint lithography (NIL) is a common tool that can be used to fabricate nanostructures and devices that are 1/80,000 of the thickness of a hair. This technique presses a hard mold into a soft high-molecular-weight polymer film at high temperature and pressure to create nanostructures. However, if the polymer used is highly viscous (flows slowly), as such polymers often are, the NIL fails as the polymer does not spread properly. In particular, this makes it difficult to use NIL for printing nanostructures onto an already patterned microstructured surface. Use of lower molecular-weight polymers that are less viscous results only in the film becoming brittle and cracking, which renders it unusable.

To overcome this issue, scientists at the University of Central Florida, Stanford University, and the University of Arizona, USA, have developed a new technique called nanoimprinting by melt processing (NIMP) in which they use a mixture of a low-molecular-weight polymer and a plasticizer. The team, led by Professor Jayan Thomas, found that this composite could be used successfully at low temperatures and pressures, without the need for any expensive equipment. Their clever use of this mixture reduced both the viscosity of the polymer and the brittleness/cracking of the resultant film. The scientists have used their new technique to accurately print large-area nanopatterns with varied feature sizes over underlying topographies, including onto and near micropillars.

Thomas and his colleagues believe that NIMP has many benefits for making nanophotonic and nanoelectronic device structures at low cost; this should have a significant impact on both the ongoing research in this area as well as the possible commercialization of such devices. They believe that their technique will benefit much of science and technology by allowing the production of more versatile nanostructures.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Nanoelectronics

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Materials/Metamaterials

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Photonics/Optics/Lasers

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project