Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 'Microring' device could aid in future optical technologies

Researchers have created a tiny "microring resonator," at left, small enough to fit on a computer chip. The device converts continuous laser light into numerous ultrashort pulses, a technology that might have applications in more advanced sensors, communications systems and laboratory instruments. At right is a grooved structure that holds an optical fiber leading into the device. (Birck Nanotechnology Center, Purdue University)
Researchers have created a tiny "microring resonator," at left, small enough to fit on a computer chip. The device converts continuous laser light into numerous ultrashort pulses, a technology that might have applications in more advanced sensors, communications systems and laboratory instruments. At right is a grooved structure that holds an optical fiber leading into the device.

(Birck Nanotechnology Center, Purdue University)

Abstract:
Spectral Line-by-Line Pulse Shaping of an On-Chip
Microresonator Frequency Comb

Fahmida Ferdous, 1Houxun Miao, 2,3* Daniel E. Leaird,1 Kartik Srinivasan,2 Jian Wang,1,4 Lei Chen,2 Leo Tom Varghese,1,4 and Andrew M. Weiner 1,4*

1School of Electrical & Computer Engineering, Purdue University

2 Center for Nanoscale Science and Technology,
National Institute of Standards and Technology

3 Maryland Nanocenter, University of Maryland

4 Birck Nanotechnology Center, Purdue University

Recently, on-chip comb generation methods based on nonlinear optical modulation in ultrahigh quality factor monolithic microresonators have been demonstrated, where two pump photons are transformed into sideband photons in a four wave mixing process mediated by the Kerr nonlinearity. Here we investigate line-by-line pulse shaping of such combs generated in silicon nitride ring resonators. We observe two distinct paths to comb formation which exhibit strikingly different time domain behaviors. For combs formed as a cascade of sidebands spaced by a single free spectral range (FSR) that spread from the pump, we are able to stably compress to nearly bandwidth-limited pulses. This indicates high coherence across the spectra and provides new data on the high passive stability of the spectral phase. For combs where the initial sidebands are spaced by multiple FSRs which then fill in to give combs with single FSR spacing, the time domain data reveal partially coherent behavior.

'Microring' device could aid in future optical technologies

West Lafayette, IN | Posted on October 19th, 2011

Researchers at Purdue University and the National Institute of Standards and Technology (NIST) have created a device small enough to fit on a computer chip that converts continuous laser light into numerous ultrashort pulses, a technology that might have applications in more advanced sensors, communications systems and laboratory instruments.

"These pulses repeat at very high rates, corresponding to hundreds of billions of pulses per second," said Andrew Weiner, the Scifres Family Distinguished Professor of Electrical and Computer Engineering.

The tiny "microring resonator" is about 80 micrometers, or the width of a human hair, and is fabricated from silicon nitride, which is compatible with silicon material widely used for electronics. Infrared light from a laser enters the chip through a single optical fiber and is directed by a structure called a waveguide into the microring.

The pulses have many segments corresponding to different frequencies, which are called "comb lines" because they resemble teeth on a comb when represented on a graph.

By precisely controlling the frequency combs, researchers hope to create advanced optical sensors that detect and measure hazardous materials or pollutants, ultrasensitive spectroscopy for laboratory research, and optics-based communications systems that transmit greater volumes of information with better quality while increasing bandwidth. The comb technology also has potential for a generation of high-bandwidth electrical signals with possible applications in wireless communications and radar.

The light originates from a continuous-wave laser, also called a single-frequency laser.

"This is a very common type of laser," Weiner said. "The intensity of this type of laser is constant, not pulsed. But in the microring the light is converted into a comb consisting of many frequencies with very nice equal spacing. The microring comb generator may serve as a competing technology to a special type of laser called a mode-locked laser, which generates many frequencies and short pulses. One advantage of the microrings is that they can be very small."

The laser light undergoes "nonlinear interaction" while inside the microring, generating a comb of new frequencies that is emitted out of the device through another optical fiber.

"The nonlinearity is critical to the generation of the comb," said doctoral student Fahmida Ferdous. "With the nonlinearity we obtain a comb of many frequencies, including the original one, and the rest are new ones generated in the microring."

Findings are detailed in a research paper appearing online this month in the journal Nature Photonics. The paper is scheduled for publication in the Dec. 11 issue.

Although other researchers previously have demonstrated the comb-generation technique, the team is the first to process the frequencies using "optical arbitrary waveform technology," pioneered by Purdue researchers led by Weiner. The researchers were able to control the amplitude and phase of each spectral line, learning that there are two types of combs - "highly coherent" and "partially coherent" - opening up new avenues to study the physics of the process.

"In future investigations, the ability to extract the phase of individual comb lines may furnish clues into the physics of the comb-generation process," Ferdous said. "Future work will include efforts to create devices that have the proper frequency for commercial applications."

The silicon-nitride device was fabricated by a team led by Houxun Miao, a researcher at NIST's Center for Nanoscale Science and Technology and the Maryland Nanocenter at the University of Maryland. Some of the work was performed at the Birck Nanotechnology Center in Purdue's Discovery Park, and experiments demonstrating short-pulse generation were performed in Purdue's School of Electrical and Computer Engineering.

The effort at Purdue is funded in part by the National Science Foundation and the Naval Postgraduate School.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Andrew Weiner
765-494-5574


Houxun Miao
301-975-8499

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Ultrafast Optics and Optical Fiber Communications Laboratory

Related News Press

News and information

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Sensors

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Discoveries

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Tools

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Military

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumericalís EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE