Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UBC researchers invent tiny artificial muscles with the strength, flexibility of elephant trunk

Carbon nanotube yarns. Courtesy of John Madden
Carbon nanotube yarns. Courtesy of John Madden

Abstract:
An international team of researchers has invented new artificial muscles strong enough to rotate objects a thousand times their own weight, but with the same flexibility of an elephant's trunk or octopus limbs.



In the animated video above, you first see a few bacteria like creatures swimming about. Their rotating flagella are highlighted with some detail of the flagella motor turning the "hook" and "filament" parts of the tail. We next see a similar type of rotating tail produced by a length of carbon nanotube thread that is inside a futuristic microbot. The yarn is immersed in a liquid electrolyte along with another electrode wire. Batteries and an electrical circuit are also inside the bot. When a voltage is applied the yarn partially untwists and turns the filament. Slow discharging of the yarn causes it to re-twist. In this way, we can imagine the micro-bot is propelled along in a series of short spurts.

UBC researchers invent tiny artificial muscles with the strength, flexibility of elephant trunk

Vancouver, Canada | Posted on October 14th, 2011

In a paper published online today on Science Express, the scientists and engineers from the University of British Columbia, the University of Wollongong in Australia, the University of Texas at Dallas and Hanyang University in Korea detail their innovation. The study elaborates on a discovery made by research fellow Javad Foroughi at the University of Wollongong.

Using yarns of carbon nanotubes that are enormously strong, tough and highly flexible, the researchers developed artificial muscles that can rotate 250 degrees per millimetre of muscle length. This is more than a thousand times that of available artificial muscles composed of shape memory alloys, conducting organic polymers or ferroelectrics, a class of materials that can hold both positive and negative electric charges, even in the absence of voltage.

"What's amazing is that these barely visible yarns composed of fibres 10,000 times thinner than a human hair can move and rapidly rotate objects two thousand times their own weight," says Assoc. Prof. John Madden, UBC Dept. of Electrical and Computer Engineering.

Madden says, "While not large enough to drive an arm or power a car, this new generation of artificial muscles - which are simple and inexpensive to make - could be used to make tiny valves, positioners, pumps, stirrers and flagella for use in drug discovery, precision assembly and perhaps even to propel tiny objects inside the bloodstream."

Central to the team's success are nanotubes that are spun into helical yarns, which means that they have left and right handed versions, which allows the yearn to be controlled by applying an electrochemical charge, and to twist and untwist.

The new material was devised at the University of Texas at Dallas and then tested as an artificial muscle in Madden's lab at UBC. A chance discovery by collaborators from Wollongong showed the enormous twist developed by the device. Guided by theory at UBC and further experiments in Wollongong and Texas, the team was able to extract considerable torsion and power from the yarns.

The torsional rotation of helically wound muscles, such as those in the flagella of bacteria, has existed in nature for hundreds of millions of years. Many other natural appendages - from the trunk of an elephant to octopus's powerful and limber tentacles - also show how helically wound muscle fibers cause rotation by contracting against a boneless core.

The nanotube yarns are activated by charging them in a salt solution, much as a battery is charged. A breakthrough discovery came from former UBC PhD student Tissaphern Mirfakhrai - now at Stanford - who found that the deformation of the yarns is proportional to the size and number of ions inserted. A similar effect is seen in lithium ion battery electrodes used in portable electronic devices, but in yarns it is put to good use. The helical structure of the yarns makes them unwind as they accept charge and swell. They twist back up again when discharged.

"The discovery, characterization, and understanding of these high performance torsional motors show the power of international collaborations," says corresponding author Ray Baughman, Robert A. Welch Professor of Chemistry and director of the University of Texas at Dallas Alan G. MacDiarmid NanoTech Institute.

Support for this research includes a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

####

For more information, please click here

Contacts:
Assoc. Prof. John Madden
UBC Dept. of Electrical Computer Engineering
Tel: 604.827.5306
Cell: 778.840.9417


Lorraine Chan
UBC Public Affairs
Tel: 604.822.2644
Cell: 604.209.3048

Copyright © University of British Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Videos/Movies

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Engineers identify how to keep surfaces dry underwater: Research team is first to identify surface 'roughness' required to achieve amazing feat August 18th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Nanomedicine

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Discoveries

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Research partnerships

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic