Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UBC researchers invent tiny artificial muscles with the strength, flexibility of elephant trunk

Carbon nanotube yarns. Courtesy of John Madden
Carbon nanotube yarns. Courtesy of John Madden

Abstract:
An international team of researchers has invented new artificial muscles strong enough to rotate objects a thousand times their own weight, but with the same flexibility of an elephant's trunk or octopus limbs.



In the animated video above, you first see a few bacteria like creatures swimming about. Their rotating flagella are highlighted with some detail of the flagella motor turning the "hook" and "filament" parts of the tail. We next see a similar type of rotating tail produced by a length of carbon nanotube thread that is inside a futuristic microbot. The yarn is immersed in a liquid electrolyte along with another electrode wire. Batteries and an electrical circuit are also inside the bot. When a voltage is applied the yarn partially untwists and turns the filament. Slow discharging of the yarn causes it to re-twist. In this way, we can imagine the micro-bot is propelled along in a series of short spurts.

UBC researchers invent tiny artificial muscles with the strength, flexibility of elephant trunk

Vancouver, Canada | Posted on October 14th, 2011

In a paper published online today on Science Express, the scientists and engineers from the University of British Columbia, the University of Wollongong in Australia, the University of Texas at Dallas and Hanyang University in Korea detail their innovation. The study elaborates on a discovery made by research fellow Javad Foroughi at the University of Wollongong.

Using yarns of carbon nanotubes that are enormously strong, tough and highly flexible, the researchers developed artificial muscles that can rotate 250 degrees per millimetre of muscle length. This is more than a thousand times that of available artificial muscles composed of shape memory alloys, conducting organic polymers or ferroelectrics, a class of materials that can hold both positive and negative electric charges, even in the absence of voltage.

"What's amazing is that these barely visible yarns composed of fibres 10,000 times thinner than a human hair can move and rapidly rotate objects two thousand times their own weight," says Assoc. Prof. John Madden, UBC Dept. of Electrical and Computer Engineering.

Madden says, "While not large enough to drive an arm or power a car, this new generation of artificial muscles - which are simple and inexpensive to make - could be used to make tiny valves, positioners, pumps, stirrers and flagella for use in drug discovery, precision assembly and perhaps even to propel tiny objects inside the bloodstream."

Central to the team's success are nanotubes that are spun into helical yarns, which means that they have left and right handed versions, which allows the yearn to be controlled by applying an electrochemical charge, and to twist and untwist.

The new material was devised at the University of Texas at Dallas and then tested as an artificial muscle in Madden's lab at UBC. A chance discovery by collaborators from Wollongong showed the enormous twist developed by the device. Guided by theory at UBC and further experiments in Wollongong and Texas, the team was able to extract considerable torsion and power from the yarns.

The torsional rotation of helically wound muscles, such as those in the flagella of bacteria, has existed in nature for hundreds of millions of years. Many other natural appendages - from the trunk of an elephant to octopus's powerful and limber tentacles - also show how helically wound muscle fibers cause rotation by contracting against a boneless core.

The nanotube yarns are activated by charging them in a salt solution, much as a battery is charged. A breakthrough discovery came from former UBC PhD student Tissaphern Mirfakhrai - now at Stanford - who found that the deformation of the yarns is proportional to the size and number of ions inserted. A similar effect is seen in lithium ion battery electrodes used in portable electronic devices, but in yarns it is put to good use. The helical structure of the yarns makes them unwind as they accept charge and swell. They twist back up again when discharged.

"The discovery, characterization, and understanding of these high performance torsional motors show the power of international collaborations," says corresponding author Ray Baughman, Robert A. Welch Professor of Chemistry and director of the University of Texas at Dallas Alan G. MacDiarmid NanoTech Institute.

Support for this research includes a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

####

For more information, please click here

Contacts:
Assoc. Prof. John Madden
UBC Dept. of Electrical Computer Engineering
Tel: 604.827.5306
Cell: 778.840.9417


Lorraine Chan
UBC Public Affairs
Tel: 604.822.2644
Cell: 604.209.3048

Copyright © University of British Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Videos/Movies

Nanotech Advances Future Mobile Devices and Wearable Technology July 5th, 2017

ANU invention may help to protect astronauts from radiation in space July 3rd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanomedicine

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Discoveries

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project