Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > UBC researchers invent tiny artificial muscles with the strength, flexibility of elephant trunk

Carbon nanotube yarns. Courtesy of John Madden
Carbon nanotube yarns. Courtesy of John Madden

Abstract:
An international team of researchers has invented new artificial muscles strong enough to rotate objects a thousand times their own weight, but with the same flexibility of an elephant's trunk or octopus limbs.



In the animated video above, you first see a few bacteria like creatures swimming about. Their rotating flagella are highlighted with some detail of the flagella motor turning the "hook" and "filament" parts of the tail. We next see a similar type of rotating tail produced by a length of carbon nanotube thread that is inside a futuristic microbot. The yarn is immersed in a liquid electrolyte along with another electrode wire. Batteries and an electrical circuit are also inside the bot. When a voltage is applied the yarn partially untwists and turns the filament. Slow discharging of the yarn causes it to re-twist. In this way, we can imagine the micro-bot is propelled along in a series of short spurts.

UBC researchers invent tiny artificial muscles with the strength, flexibility of elephant trunk

Vancouver, Canada | Posted on October 14th, 2011

In a paper published online today on Science Express, the scientists and engineers from the University of British Columbia, the University of Wollongong in Australia, the University of Texas at Dallas and Hanyang University in Korea detail their innovation. The study elaborates on a discovery made by research fellow Javad Foroughi at the University of Wollongong.

Using yarns of carbon nanotubes that are enormously strong, tough and highly flexible, the researchers developed artificial muscles that can rotate 250 degrees per millimetre of muscle length. This is more than a thousand times that of available artificial muscles composed of shape memory alloys, conducting organic polymers or ferroelectrics, a class of materials that can hold both positive and negative electric charges, even in the absence of voltage.

"What's amazing is that these barely visible yarns composed of fibres 10,000 times thinner than a human hair can move and rapidly rotate objects two thousand times their own weight," says Assoc. Prof. John Madden, UBC Dept. of Electrical and Computer Engineering.

Madden says, "While not large enough to drive an arm or power a car, this new generation of artificial muscles - which are simple and inexpensive to make - could be used to make tiny valves, positioners, pumps, stirrers and flagella for use in drug discovery, precision assembly and perhaps even to propel tiny objects inside the bloodstream."

Central to the team's success are nanotubes that are spun into helical yarns, which means that they have left and right handed versions, which allows the yearn to be controlled by applying an electrochemical charge, and to twist and untwist.

The new material was devised at the University of Texas at Dallas and then tested as an artificial muscle in Madden's lab at UBC. A chance discovery by collaborators from Wollongong showed the enormous twist developed by the device. Guided by theory at UBC and further experiments in Wollongong and Texas, the team was able to extract considerable torsion and power from the yarns.

The torsional rotation of helically wound muscles, such as those in the flagella of bacteria, has existed in nature for hundreds of millions of years. Many other natural appendages - from the trunk of an elephant to octopus's powerful and limber tentacles - also show how helically wound muscle fibers cause rotation by contracting against a boneless core.

The nanotube yarns are activated by charging them in a salt solution, much as a battery is charged. A breakthrough discovery came from former UBC PhD student Tissaphern Mirfakhrai - now at Stanford - who found that the deformation of the yarns is proportional to the size and number of ions inserted. A similar effect is seen in lithium ion battery electrodes used in portable electronic devices, but in yarns it is put to good use. The helical structure of the yarns makes them unwind as they accept charge and swell. They twist back up again when discharged.

"The discovery, characterization, and understanding of these high performance torsional motors show the power of international collaborations," says corresponding author Ray Baughman, Robert A. Welch Professor of Chemistry and director of the University of Texas at Dallas Alan G. MacDiarmid NanoTech Institute.

Support for this research includes a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

####

For more information, please click here

Contacts:
Assoc. Prof. John Madden
UBC Dept. of Electrical Computer Engineering
Tel: 604.827.5306
Cell: 778.840.9417


Lorraine Chan
UBC Public Affairs
Tel: 604.822.2644
Cell: 604.209.3048

Copyright © University of British Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Videos/Movies

The moiré patterns of three layers change the electronic properties of graphene March 8th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

Straightforward biosynthesis of functional bulk nanocomposites February 5th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chemical synthesis of nanotubes: Nanometer-sized tubes made from simple benzene molecules January 11th, 2019

Nanomedicine

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Discoveries

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Announcements

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Research partnerships

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Chemicals induce dipoles to damp plasmons: Rice University-led study finds molecules alter gold nanoparticles' electronic properties March 22nd, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project