Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists localize 3-D matter waves for first time

Photo by
L. Brian Stauffer

An illustration of Anderson localization. The green balloons represent disordered barriers that localize the sound of the trumpet at its source.
Photo by L. Brian Stauffer

An illustration of Anderson localization. The green balloons represent disordered barriers that localize the sound of the trumpet at its source.

Abstract:
University of Illinois physicists have experimentally demonstrated for the first time how three-dimensional conduction is affected by the defects that plague materials. Understanding these effects is important for many electronics applications.

Physicists localize 3-D matter waves for first time

Champaign, IL | Posted on October 7th, 2011

Led by physics professor Brian DeMarco, the researchers achieved complete localization of quantum matter waves in three dimensions, first theorized roughly half a century ago. The group published its findings in the Oct. 7 issue of the journal Science.

Defects in materials are inevitable, but their effects are poorly understood. Understanding how disorder in a material affects waves traveling through it has implications for many applications, including ultrasonic waves in medical imaging, lasers for imaging and sensing, and electron waves for electronics and superconductors.

"The physics behind disorder is fundamental to understanding the impact of unavoidable material imperfections on these kinds of applications," DeMarco said.

Scientists have long theorized, but never observed, that strong disorder causing interference on all sides can trap a matter wave in one place, a phenomenon known as Anderson localization.

According to DeMarco, this is analogous to a trumpeter playing in a concert hall filled with randomly placed barriers that reflect sound waves. Instead of traveling in all directions, the sound stays at its source, never propagating outward because of destructive interference.

"The result? Perfect silence everywhere in the concert hall. The trumpeter blows into his instrument, but the sound never leaves the trumpet," DeMarco said. "That's exactly the case in our experiment, although we use quantum matter waves instead of sound, and the barriers are created using a speckled green laser beam."

To simulate electrons moving in waves through a metal, DeMarco's group uses ultra-cold atoms moving as matter waves in a disordered laser beam. Using laser light as an analogy for a material allows the researchers to completely characterize and control the disorder - a feat impossible in solids, which has made understanding and testing theories of Anderson localization difficult.
The researchers demonstrated that the laser light could completely localize the atoms - the first direct observation of three-dimensional Anderson localization of matter.

"This means that we can study Anderson localization in a way that is relevant to materials," DeMarco said. "Now, theories of Anderson localization in 3-D can be compared to our ‘material' and tested for the first time."

The team also measured the energy a particle needs to escape localization, known as the mobility edge. Waves with energy higher than the mobility edge are free to propagate throughout the disorder, but waves with energy lower than the mobility edge are completely localized - even when there is a path through the barriers.

By tuning the power of the speckled green laser beam, the researchers measured the relationship between the mobility edge and disorder strength. They found that as disorder increased, so did the mobility edge, meaning that materials with high concentrations of defects induce more localization.

DeMarco hopes to use the quantum-matter analogues to better understand and manipulate materials.

Eventually, he plans to use his measurements of Anderson localization and the mobility edge along with future work exploring other parameters to engineer materials to better perform specific applications - in particular, high-temperature superconductors.

"Comparing measurements on a solid to theory are complicated by our lack of knowledge of the disorder in the solid and our inability to remove it," DeMarco said. "But, that's exactly what we can do with our experiment, and what makes it so powerful and exciting."

The Defense Advanced Research Projects Agency, the Office of Naval Research and the National Science Foundation supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Brian DeMarco
217-244-9848

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Three-Dimensional Anderson Localization of Ultracold Matter,” is available online:

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Physics

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Sound and light trapped by disorder February 8th, 2019

Superconductivity

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

The moiré patterns of three layers change the electronic properties of graphene March 8th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Chip Technology

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Discoveries

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Military

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Quantum nanoscience

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

A quantum magnet with a topological twist: Materials with a kagome lattice pattern exhibit 'negative magnetism' and long-sought 'flat-band' electrons February 23rd, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project