Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists localize 3-D matter waves for first time

Photo by
L. Brian Stauffer

An illustration of Anderson localization. The green balloons represent disordered barriers that localize the sound of the trumpet at its source.
Photo by L. Brian Stauffer

An illustration of Anderson localization. The green balloons represent disordered barriers that localize the sound of the trumpet at its source.

Abstract:
University of Illinois physicists have experimentally demonstrated for the first time how three-dimensional conduction is affected by the defects that plague materials. Understanding these effects is important for many electronics applications.

Physicists localize 3-D matter waves for first time

Champaign, IL | Posted on October 7th, 2011

Led by physics professor Brian DeMarco, the researchers achieved complete localization of quantum matter waves in three dimensions, first theorized roughly half a century ago. The group published its findings in the Oct. 7 issue of the journal Science.

Defects in materials are inevitable, but their effects are poorly understood. Understanding how disorder in a material affects waves traveling through it has implications for many applications, including ultrasonic waves in medical imaging, lasers for imaging and sensing, and electron waves for electronics and superconductors.

"The physics behind disorder is fundamental to understanding the impact of unavoidable material imperfections on these kinds of applications," DeMarco said.

Scientists have long theorized, but never observed, that strong disorder causing interference on all sides can trap a matter wave in one place, a phenomenon known as Anderson localization.

According to DeMarco, this is analogous to a trumpeter playing in a concert hall filled with randomly placed barriers that reflect sound waves. Instead of traveling in all directions, the sound stays at its source, never propagating outward because of destructive interference.

"The result? Perfect silence everywhere in the concert hall. The trumpeter blows into his instrument, but the sound never leaves the trumpet," DeMarco said. "That's exactly the case in our experiment, although we use quantum matter waves instead of sound, and the barriers are created using a speckled green laser beam."

To simulate electrons moving in waves through a metal, DeMarco's group uses ultra-cold atoms moving as matter waves in a disordered laser beam. Using laser light as an analogy for a material allows the researchers to completely characterize and control the disorder - a feat impossible in solids, which has made understanding and testing theories of Anderson localization difficult.
The researchers demonstrated that the laser light could completely localize the atoms - the first direct observation of three-dimensional Anderson localization of matter.

"This means that we can study Anderson localization in a way that is relevant to materials," DeMarco said. "Now, theories of Anderson localization in 3-D can be compared to our ‘material' and tested for the first time."

The team also measured the energy a particle needs to escape localization, known as the mobility edge. Waves with energy higher than the mobility edge are free to propagate throughout the disorder, but waves with energy lower than the mobility edge are completely localized - even when there is a path through the barriers.

By tuning the power of the speckled green laser beam, the researchers measured the relationship between the mobility edge and disorder strength. They found that as disorder increased, so did the mobility edge, meaning that materials with high concentrations of defects induce more localization.

DeMarco hopes to use the quantum-matter analogues to better understand and manipulate materials.

Eventually, he plans to use his measurements of Anderson localization and the mobility edge along with future work exploring other parameters to engineer materials to better perform specific applications - in particular, high-temperature superconductors.

"Comparing measurements on a solid to theory are complicated by our lack of knowledge of the disorder in the solid and our inability to remove it," DeMarco said. "But, that's exactly what we can do with our experiment, and what makes it so powerful and exciting."

The Defense Advanced Research Projects Agency, the Office of Naval Research and the National Science Foundation supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Brian DeMarco
217-244-9848

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Three-Dimensional Anderson Localization of Ultracold Matter,” is available online:

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Physics

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Superconductivity

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Iron secrets behind superconductors unlocked July 7th, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Chip Technology

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Discoveries

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Military

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

Quantum nanoscience

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project