Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Brookhaven Lab and Nanofactory Instruments, AB, Receive the 2011 Microscopy Today Innovation Award

Abstract:
The U.S. Department of Energy's Brookhaven National Laboratory and Nanofactory Instruments, AB, a Swedish company that develops and markets scanning probe microscopy instrumentation, have received the 2011 Microscopy Today Innovation Award. Microscopy Today is an academic journal owned by the Microscopy Society of America, an affiliate of the American Institute of Physics and the American Association for the Advancement of Science, and published by Cambridge University Press.

Brookhaven Lab and Nanofactory Instruments, AB, Receive the 2011 Microscopy Today Innovation Award

Upton, NY | Posted on September 24th, 2011

At the Microscopy Society of America's annual meeting in Nashville, Tennessee, August 7-11, 2011, Brookhaven Lab senior physicist Yimei Zhu accepted the award on behalf of Brookhaven Lab and Nanofactory Instruments, AB. The award consists of a plaque that commends the institutions "for the development of the Multimodal Optical Nanoprobe which enables a synergistic combination of physical measurements in a Transmission Electron Microscope."

Zhu, a Brookhaven Lab senior physicist, led the Brookhaven team that worked with Nanofactory Instruments, AB, to develop the multimodal optical nanoprobe. The device is mounted on a transmission electron microscope to measure numerous properties of a sample simultaneously, in addition to imaging.

The nanoprobe measures the optical, electrical, mechanical, and structural properties of nano-sized materials and devices that are magnified from 1,000 to 50 million times. Combining various measurement techniques in one instrument offers a new level of material characterization that is not possible by sequential application of the techniques. These capabilities have been streamlined into a single package that, with minimal expense and difficulty, can be integrated into almost any electron microscopy system.

Zhu said, "The nanoprobe enables researchers to simultaneously measure a material's structural behavior under various stimuli, including electric, optical, and mechanical ones, and to evaluate its functionality and performance. Here, simultaneously is the key. For example, if we want to improve the efficiency of a solar cell to harness energy for the sun, we need to shine a light on the device and measure the electric current it generates at same time, while observing the response of electronic structure and atomic arrangement at specific sites of interest. This capability is unprecedented and is a big improvement over sequentially determining these qualities."

The nanoprobe can be used in a wide variety of experiments to help scientists understand how optical, electrical, mechanical, and structural properties of functional materials and devices are intertwined. This information is vital to making improvements in optoelectronic systems, such as fiber optic communications, laser systems, remote sensing systems, medical diagnostic systems, and optical information systems. It is an important tool in photovoltaics research to reveal site-specific optoelectronic properties of materials and devices. In other applications, the nanoprobe can help to determine strain effects on various properties of nanostructured materials, such as quantum dots, nanowires, and graphene sheets. The nanoprobe tip can be pressed on the point of interest in a sample to investigate the local stress response and strain distribution.

Brookhaven Lab designed and built the laser system and holder for the nanoprobe. Also, Brookhaven funded the construction of the device's holder by Nanofactory Instruments, AB. In addition to Zhu, members of the Brookhaven team included Mirko Milas and Jonathan Rameau, both postdoctoral fellows; and Matt Sfeir, an assistant scientist. Brookhaven Science Associates, the company that manages Brookhaven Lab for the U.S. Department of Energy, has applied for a patent on the device. R&D Magazine chose the nanoprobe as one of the top 100 technological achievements of the year in 2011.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Diane Greenberg

(631) 344-2347
or
Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Laboratories

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Tools

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Events/Classes

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project