Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > GCEP awards $3.5 million for energy research

Abstract:
Stanford University's Global Climate and Energy Project is awarding $3.5 million to researchers at five universities to develop new technologies that could dramatically improve energy storage capacity on the electric grid.

GCEP awards $3.5 million for energy research

Stanford, CA | Posted on September 22nd, 2011

The awards bring the total number of GCEP-supported research programs to 86, with total funding of approximately $104 million since the project's launch in 2002.

"GCEP is delighted to announce our first research awards in the area of advanced grid energy storage," said GCEP Director Sally Benson, a research professor of energy resources engineering at Stanford. "Finding dependable, low-cost ways to store electricity is the key to future grid reliability, especially given the rapid growth of intermittent renewable energy sources, such as solar and wind power."

This GCEP research initiative focuses on new approaches for developing high-efficiency electrochemical storage systems and flywheels - rotating devices that convert stored kinetic energy into electricity.

Twelve investigators from across the United States will participate in the initiative focusing on three innovative technologies:

Enhanced Electrolyte Energy Storage Systems: This research seeks to introduce transformative changes in the construction and composition of the redox flow battery, a promising but expensive technology that stores and generates electricity by pumping streams of charged materials (electrolytes) across a membrane.

Investigators: Jeremy Meyers and Allen Bard, University of Texas-Austin; and Thomas Zawodzinski Jr. and Alex Papandrew, University of Tennessee-Knoxville.

Novel Solid Oxide Flow Batteries: The goal of this program is to develop a unique type of flow battery that stores energy in methane and other gases, and then uses the stored fuel to generate electricity like a fuel cell.

Investigators: Scott Barnett, Northwestern University; Robert Kee and Robert Braun, Colorado School of Mines.

"Thanks to support from GCEP, we now have a unique opportunity to provide sufficient proof of concept to justify further investment in solid oxide flow batteries and help advance this critical new technology," said Barnett, professor of materials science and engineering at Northwestern.

Low-Cost Flywheel Energy Storage: This program will investigate two novel designs: pendulum and hubless flywheels that use high-strength carbon nanomaterials with superconducting qualities to increase energy storage capacity at a significantly reduced cost.

Investigators: Robert Hebner, Richard Thompson and Siddharth Pratap,

University of Texas-Austin; and Ray Baughman and Shaoli Fang, University of Texas-Dallas.

"The GCEP award will allow us to advance the understanding of revolutionary flywheel designs, which have the potential for a 10-fold decrease in the cost of stored energy compared to other technologies," said Thompson, senior engineering scientist at the UT-Austin Center for Electromechanics.

GCEP is a collaboration of the scientific and engineering communities in academia and industry. With the support and participation of ExxonMobil, GE, Schlumberger and Toyota, GCEP explores science that could lead to energy technologies that are efficient, environmentally benign and cost-effective.

"It is extremely gratifying to see GCEP provide funding to institutions across the country for collaborative research in energy storage," said Gary Leonard, chair of the GCEP management committee and technology director for aero-thermal and mechanical systems at GE. "Each of these awards has a strong potential to produce game-changing technologies that could reduce greenhouse gas emissions and have a significant impact on global climate change."

Advanced energy storage will be one of the key technical areas featured at the seventh annual GCEP Research Symposium Oct. 4-5 at Stanford University. Registration for the event is required.

####

For more information, please click here

Contacts:
Mark Shwartz

650-723-9296

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Superconductivity

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Energy

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Smarter window materials can control light and energy July 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project