Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > GCEP awards $3.5 million for energy research

Abstract:
Stanford University's Global Climate and Energy Project is awarding $3.5 million to researchers at five universities to develop new technologies that could dramatically improve energy storage capacity on the electric grid.

GCEP awards $3.5 million for energy research

Stanford, CA | Posted on September 22nd, 2011

The awards bring the total number of GCEP-supported research programs to 86, with total funding of approximately $104 million since the project's launch in 2002.

"GCEP is delighted to announce our first research awards in the area of advanced grid energy storage," said GCEP Director Sally Benson, a research professor of energy resources engineering at Stanford. "Finding dependable, low-cost ways to store electricity is the key to future grid reliability, especially given the rapid growth of intermittent renewable energy sources, such as solar and wind power."

This GCEP research initiative focuses on new approaches for developing high-efficiency electrochemical storage systems and flywheels - rotating devices that convert stored kinetic energy into electricity.

Twelve investigators from across the United States will participate in the initiative focusing on three innovative technologies:

Enhanced Electrolyte Energy Storage Systems: This research seeks to introduce transformative changes in the construction and composition of the redox flow battery, a promising but expensive technology that stores and generates electricity by pumping streams of charged materials (electrolytes) across a membrane.

Investigators: Jeremy Meyers and Allen Bard, University of Texas-Austin; and Thomas Zawodzinski Jr. and Alex Papandrew, University of Tennessee-Knoxville.

Novel Solid Oxide Flow Batteries: The goal of this program is to develop a unique type of flow battery that stores energy in methane and other gases, and then uses the stored fuel to generate electricity like a fuel cell.

Investigators: Scott Barnett, Northwestern University; Robert Kee and Robert Braun, Colorado School of Mines.

"Thanks to support from GCEP, we now have a unique opportunity to provide sufficient proof of concept to justify further investment in solid oxide flow batteries and help advance this critical new technology," said Barnett, professor of materials science and engineering at Northwestern.

Low-Cost Flywheel Energy Storage: This program will investigate two novel designs: pendulum and hubless flywheels that use high-strength carbon nanomaterials with superconducting qualities to increase energy storage capacity at a significantly reduced cost.

Investigators: Robert Hebner, Richard Thompson and Siddharth Pratap,

University of Texas-Austin; and Ray Baughman and Shaoli Fang, University of Texas-Dallas.

"The GCEP award will allow us to advance the understanding of revolutionary flywheel designs, which have the potential for a 10-fold decrease in the cost of stored energy compared to other technologies," said Thompson, senior engineering scientist at the UT-Austin Center for Electromechanics.

GCEP is a collaboration of the scientific and engineering communities in academia and industry. With the support and participation of ExxonMobil, GE, Schlumberger and Toyota, GCEP explores science that could lead to energy technologies that are efficient, environmentally benign and cost-effective.

"It is extremely gratifying to see GCEP provide funding to institutions across the country for collaborative research in energy storage," said Gary Leonard, chair of the GCEP management committee and technology director for aero-thermal and mechanical systems at GE. "Each of these awards has a strong potential to produce game-changing technologies that could reduce greenhouse gas emissions and have a significant impact on global climate change."

Advanced energy storage will be one of the key technical areas featured at the seventh annual GCEP Research Symposium Oct. 4-5 at Stanford University. Registration for the event is required.

####

For more information, please click here

Contacts:
Mark Shwartz

650-723-9296

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Superconductivity

New evidence for an exotic, predicted superconducting state October 27th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Energy

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE