Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Grant Helps Researchers Develop Better Solar Cells for Spacecraft: NASA Funding to Power Satellites, Create Jobs

When ultraviolet light is applied to nanocrystals in the vials on the left, the size of the nanocrystals change and emit different, more colorful light. These nanocrystals are investigated for their use in high performance solar cells.
When ultraviolet light is applied to nanocrystals in the vials on the left, the size of the nanocrystals change and emit different, more colorful light. These nanocrystals are investigated for their use in high performance solar cells.

Abstract:
Researchers at the University of Arkansas and Arkansas State University will share more than $1 million in grant funding, partly from NASA with matching funds from each institution to investigate the use of semiconductor materials in photovoltaic devices that power satellites and other instruments in space.

Grant Helps Researchers Develop Better Solar Cells for Spacecraft: NASA Funding to Power Satellites, Create Jobs

Fayetteville, AR | Posted on September 21st, 2011

The funds, administered by the Arkansas NASA-EPSCoR office at the University of Arkansas at Little Rock, will enhance research opportunities in the state and could create high-tech jobs. The National Science Foundation initiated EPSCoR - the Experimental Program to Stimulate Competitive Research - to encourage local action to develop long-term improvements in a state's science and engineering enterprise.

"This research will have a significantly positive impact on the quality and competitiveness of the state's academic research enterprise," said Omar Manasreh, professor of electrical engineering at the University of Arkansas. "It will create new opportunities for further development in the field of novel photovoltaic materials and devices."

The three-year grant totals slightly more than $1 million. As principal investigator, Manasreh will receive $710,646 - $473,764 from NASA and $236,882 in cost-sharing funds from the University of Arkansas. Liangmin Zhang, assistant professor at Arkansas State University, will receive $171,235 from NASA and $85,617 from ASU. UALR will receive $90,000 from NASA to cover administrative costs.

The funding will allow researchers in Manasreh's Optoelectronics Research Lab to continue growing and functionalizing semiconductor and metallic nanoparticles to be used in solar cells. He said this work could eventually lead to the start of a private company based in Arkansas. In 2010, Manasreh received a five-year $1.13 million grant from the U.S. Air Force Office of Scientific Research, which included cost sharing from the University of Arkansas, to pursue similar and complementary work.

The ultimate goal is to fabricate and test a photovoltaic device that is capable of possessing a solar energy conversion efficiency of 40 percent or better. Currently, solar panels used on NASA satellites and spacecraft use silicon-based technology, which cannot produce light-to-energy conversion efficiency greater than 23 percent.

Manasreh employs two approaches to fabricate solar cells. Instead of silicon, the first approach involves a combination of copper, indium, gallium and selenium (CuInSe2 and CuInGaSe2) as the semiconductor material to grow nanocrystals. The researchers make the nanocrystals functional by generating volatile ligands, which are molecules that bind to a central atom. The nanocrystals are then either converted into thin films or combined with titanium dioxide or zinc oxide nanotubes to create the desired solar cells. After fabrication of the cells, the researchers will test and evaluate their performance.

The second approach uses molecular beam epitaxy, a method of depositing nanocrystals, to create quantum dots made of indium arsenide (InAs). Quantum dots are nanosized particles of semiconductor material.

To enhance the performance of the solar cells, the researchers will use short ligands to couple metallic nanoparticles to the nanocrystals and quantum dots. They will then investigate the plasmonic effect of trapping sun light, which in turn increases the energy conversion efficiency. Just as a photon is the quantum of the electromagnetic waves, a plasmon is the quantum of charge waves generated by light.

Manasreh is member of the Institute for Nanoscience and Engineering at the University of Arkansas. His research has focused on experimental and theoretical optoelectronic properties of semiconductors, superlattices, nanostructures and related devices. He has worked extensively with electronic and optoelectronic applications, photovoltaic materials and devices and growth of nanomaterials. His recent work has focused on optoelectronic devices such as multi-color detectors and infrared detectors for focal plane arrays. Since joining the University of Arkansas in 2003, he has received more than $8 million in public research funding. This funding has been used to establish a state-of-the-art research lab with instrumentations ranging from nanomaterial characterization and device fabrication to device testing and evaluation.

####

For more information, please click here

Contacts:
Omar Manasreh, professor, electrical engineering
College of Engineering
479-575-6053


Matt McGowan, science and research communications officer
University Relations
479-575-4246

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Jobs

Secretary Vilsack Announces Partnership to Advance Commercial Potential of Cellulosic Nanomaterial from Wood December 11th, 2013

Cutting Away at the NRC's Research Capability December 6th, 2013

Project aims to mass-produce 'nanopetals' for sensors, batteries October 22nd, 2013

Governor Cuomo Announces 'Nano Utica' $1.5 Billion Public-Private Investment That Will Make the Mohawk Valley New York's Next Major Hub of Nanotech Research October 12th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Aerospace/Space

New evidence for an exotic, predicted superconducting state October 27th, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Solar/Photovoltaic

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE