Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Grant Helps Researchers Develop Better Solar Cells for Spacecraft: NASA Funding to Power Satellites, Create Jobs

When ultraviolet light is applied to nanocrystals in the vials on the left, the size of the nanocrystals change and emit different, more colorful light. These nanocrystals are investigated for their use in high performance solar cells.
When ultraviolet light is applied to nanocrystals in the vials on the left, the size of the nanocrystals change and emit different, more colorful light. These nanocrystals are investigated for their use in high performance solar cells.

Abstract:
Researchers at the University of Arkansas and Arkansas State University will share more than $1 million in grant funding, partly from NASA with matching funds from each institution to investigate the use of semiconductor materials in photovoltaic devices that power satellites and other instruments in space.

Grant Helps Researchers Develop Better Solar Cells for Spacecraft: NASA Funding to Power Satellites, Create Jobs

Fayetteville, AR | Posted on September 21st, 2011

The funds, administered by the Arkansas NASA-EPSCoR office at the University of Arkansas at Little Rock, will enhance research opportunities in the state and could create high-tech jobs. The National Science Foundation initiated EPSCoR - the Experimental Program to Stimulate Competitive Research - to encourage local action to develop long-term improvements in a state's science and engineering enterprise.

"This research will have a significantly positive impact on the quality and competitiveness of the state's academic research enterprise," said Omar Manasreh, professor of electrical engineering at the University of Arkansas. "It will create new opportunities for further development in the field of novel photovoltaic materials and devices."

The three-year grant totals slightly more than $1 million. As principal investigator, Manasreh will receive $710,646 - $473,764 from NASA and $236,882 in cost-sharing funds from the University of Arkansas. Liangmin Zhang, assistant professor at Arkansas State University, will receive $171,235 from NASA and $85,617 from ASU. UALR will receive $90,000 from NASA to cover administrative costs.

The funding will allow researchers in Manasreh's Optoelectronics Research Lab to continue growing and functionalizing semiconductor and metallic nanoparticles to be used in solar cells. He said this work could eventually lead to the start of a private company based in Arkansas. In 2010, Manasreh received a five-year $1.13 million grant from the U.S. Air Force Office of Scientific Research, which included cost sharing from the University of Arkansas, to pursue similar and complementary work.

The ultimate goal is to fabricate and test a photovoltaic device that is capable of possessing a solar energy conversion efficiency of 40 percent or better. Currently, solar panels used on NASA satellites and spacecraft use silicon-based technology, which cannot produce light-to-energy conversion efficiency greater than 23 percent.

Manasreh employs two approaches to fabricate solar cells. Instead of silicon, the first approach involves a combination of copper, indium, gallium and selenium (CuInSe2 and CuInGaSe2) as the semiconductor material to grow nanocrystals. The researchers make the nanocrystals functional by generating volatile ligands, which are molecules that bind to a central atom. The nanocrystals are then either converted into thin films or combined with titanium dioxide or zinc oxide nanotubes to create the desired solar cells. After fabrication of the cells, the researchers will test and evaluate their performance.

The second approach uses molecular beam epitaxy, a method of depositing nanocrystals, to create quantum dots made of indium arsenide (InAs). Quantum dots are nanosized particles of semiconductor material.

To enhance the performance of the solar cells, the researchers will use short ligands to couple metallic nanoparticles to the nanocrystals and quantum dots. They will then investigate the plasmonic effect of trapping sun light, which in turn increases the energy conversion efficiency. Just as a photon is the quantum of the electromagnetic waves, a plasmon is the quantum of charge waves generated by light.

Manasreh is member of the Institute for Nanoscience and Engineering at the University of Arkansas. His research has focused on experimental and theoretical optoelectronic properties of semiconductors, superlattices, nanostructures and related devices. He has worked extensively with electronic and optoelectronic applications, photovoltaic materials and devices and growth of nanomaterials. His recent work has focused on optoelectronic devices such as multi-color detectors and infrared detectors for focal plane arrays. Since joining the University of Arkansas in 2003, he has received more than $8 million in public research funding. This funding has been used to establish a state-of-the-art research lab with instrumentations ranging from nanomaterial characterization and device fabrication to device testing and evaluation.

####

For more information, please click here

Contacts:
Omar Manasreh, professor, electrical engineering
College of Engineering
479-575-6053


Matt McGowan, science and research communications officer
University Relations
479-575-4246

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Jobs

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Participate in the development of Malaysia’s National Graphene Action Plan 2020 October 10th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Announcements

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Aerospace/Space

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

Solar/Photovoltaic

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project