Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Grant Helps Researchers Develop Better Solar Cells for Spacecraft: NASA Funding to Power Satellites, Create Jobs

When ultraviolet light is applied to nanocrystals in the vials on the left, the size of the nanocrystals change and emit different, more colorful light. These nanocrystals are investigated for their use in high performance solar cells.
When ultraviolet light is applied to nanocrystals in the vials on the left, the size of the nanocrystals change and emit different, more colorful light. These nanocrystals are investigated for their use in high performance solar cells.

Abstract:
Researchers at the University of Arkansas and Arkansas State University will share more than $1 million in grant funding, partly from NASA with matching funds from each institution to investigate the use of semiconductor materials in photovoltaic devices that power satellites and other instruments in space.

Grant Helps Researchers Develop Better Solar Cells for Spacecraft: NASA Funding to Power Satellites, Create Jobs

Fayetteville, AR | Posted on September 21st, 2011

The funds, administered by the Arkansas NASA-EPSCoR office at the University of Arkansas at Little Rock, will enhance research opportunities in the state and could create high-tech jobs. The National Science Foundation initiated EPSCoR - the Experimental Program to Stimulate Competitive Research - to encourage local action to develop long-term improvements in a state's science and engineering enterprise.

"This research will have a significantly positive impact on the quality and competitiveness of the state's academic research enterprise," said Omar Manasreh, professor of electrical engineering at the University of Arkansas. "It will create new opportunities for further development in the field of novel photovoltaic materials and devices."

The three-year grant totals slightly more than $1 million. As principal investigator, Manasreh will receive $710,646 - $473,764 from NASA and $236,882 in cost-sharing funds from the University of Arkansas. Liangmin Zhang, assistant professor at Arkansas State University, will receive $171,235 from NASA and $85,617 from ASU. UALR will receive $90,000 from NASA to cover administrative costs.

The funding will allow researchers in Manasreh's Optoelectronics Research Lab to continue growing and functionalizing semiconductor and metallic nanoparticles to be used in solar cells. He said this work could eventually lead to the start of a private company based in Arkansas. In 2010, Manasreh received a five-year $1.13 million grant from the U.S. Air Force Office of Scientific Research, which included cost sharing from the University of Arkansas, to pursue similar and complementary work.

The ultimate goal is to fabricate and test a photovoltaic device that is capable of possessing a solar energy conversion efficiency of 40 percent or better. Currently, solar panels used on NASA satellites and spacecraft use silicon-based technology, which cannot produce light-to-energy conversion efficiency greater than 23 percent.

Manasreh employs two approaches to fabricate solar cells. Instead of silicon, the first approach involves a combination of copper, indium, gallium and selenium (CuInSe2 and CuInGaSe2) as the semiconductor material to grow nanocrystals. The researchers make the nanocrystals functional by generating volatile ligands, which are molecules that bind to a central atom. The nanocrystals are then either converted into thin films or combined with titanium dioxide or zinc oxide nanotubes to create the desired solar cells. After fabrication of the cells, the researchers will test and evaluate their performance.

The second approach uses molecular beam epitaxy, a method of depositing nanocrystals, to create quantum dots made of indium arsenide (InAs). Quantum dots are nanosized particles of semiconductor material.

To enhance the performance of the solar cells, the researchers will use short ligands to couple metallic nanoparticles to the nanocrystals and quantum dots. They will then investigate the plasmonic effect of trapping sun light, which in turn increases the energy conversion efficiency. Just as a photon is the quantum of the electromagnetic waves, a plasmon is the quantum of charge waves generated by light.

Manasreh is member of the Institute for Nanoscience and Engineering at the University of Arkansas. His research has focused on experimental and theoretical optoelectronic properties of semiconductors, superlattices, nanostructures and related devices. He has worked extensively with electronic and optoelectronic applications, photovoltaic materials and devices and growth of nanomaterials. His recent work has focused on optoelectronic devices such as multi-color detectors and infrared detectors for focal plane arrays. Since joining the University of Arkansas in 2003, he has received more than $8 million in public research funding. This funding has been used to establish a state-of-the-art research lab with instrumentations ranging from nanomaterial characterization and device fabrication to device testing and evaluation.

####

For more information, please click here

Contacts:
Omar Manasreh, professor, electrical engineering
College of Engineering
479-575-6053


Matt McGowan, science and research communications officer
University Relations
479-575-4246

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Jobs

Participate in the development of Malaysia’s National Graphene Action Plan 2020 October 10th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Aerospace/Space

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

New method improves accuracy of imaging systems February 8th, 2017

National Space Society's Space Settlement Summit Draws Industry Leaders February 4th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project