Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Grant Helps Researchers Develop Better Solar Cells for Spacecraft: NASA Funding to Power Satellites, Create Jobs

When ultraviolet light is applied to nanocrystals in the vials on the left, the size of the nanocrystals change and emit different, more colorful light. These nanocrystals are investigated for their use in high performance solar cells.
When ultraviolet light is applied to nanocrystals in the vials on the left, the size of the nanocrystals change and emit different, more colorful light. These nanocrystals are investigated for their use in high performance solar cells.

Abstract:
Researchers at the University of Arkansas and Arkansas State University will share more than $1 million in grant funding, partly from NASA with matching funds from each institution to investigate the use of semiconductor materials in photovoltaic devices that power satellites and other instruments in space.

Grant Helps Researchers Develop Better Solar Cells for Spacecraft: NASA Funding to Power Satellites, Create Jobs

Fayetteville, AR | Posted on September 21st, 2011

The funds, administered by the Arkansas NASA-EPSCoR office at the University of Arkansas at Little Rock, will enhance research opportunities in the state and could create high-tech jobs. The National Science Foundation initiated EPSCoR - the Experimental Program to Stimulate Competitive Research - to encourage local action to develop long-term improvements in a state's science and engineering enterprise.

"This research will have a significantly positive impact on the quality and competitiveness of the state's academic research enterprise," said Omar Manasreh, professor of electrical engineering at the University of Arkansas. "It will create new opportunities for further development in the field of novel photovoltaic materials and devices."

The three-year grant totals slightly more than $1 million. As principal investigator, Manasreh will receive $710,646 - $473,764 from NASA and $236,882 in cost-sharing funds from the University of Arkansas. Liangmin Zhang, assistant professor at Arkansas State University, will receive $171,235 from NASA and $85,617 from ASU. UALR will receive $90,000 from NASA to cover administrative costs.

The funding will allow researchers in Manasreh's Optoelectronics Research Lab to continue growing and functionalizing semiconductor and metallic nanoparticles to be used in solar cells. He said this work could eventually lead to the start of a private company based in Arkansas. In 2010, Manasreh received a five-year $1.13 million grant from the U.S. Air Force Office of Scientific Research, which included cost sharing from the University of Arkansas, to pursue similar and complementary work.

The ultimate goal is to fabricate and test a photovoltaic device that is capable of possessing a solar energy conversion efficiency of 40 percent or better. Currently, solar panels used on NASA satellites and spacecraft use silicon-based technology, which cannot produce light-to-energy conversion efficiency greater than 23 percent.

Manasreh employs two approaches to fabricate solar cells. Instead of silicon, the first approach involves a combination of copper, indium, gallium and selenium (CuInSe2 and CuInGaSe2) as the semiconductor material to grow nanocrystals. The researchers make the nanocrystals functional by generating volatile ligands, which are molecules that bind to a central atom. The nanocrystals are then either converted into thin films or combined with titanium dioxide or zinc oxide nanotubes to create the desired solar cells. After fabrication of the cells, the researchers will test and evaluate their performance.

The second approach uses molecular beam epitaxy, a method of depositing nanocrystals, to create quantum dots made of indium arsenide (InAs). Quantum dots are nanosized particles of semiconductor material.

To enhance the performance of the solar cells, the researchers will use short ligands to couple metallic nanoparticles to the nanocrystals and quantum dots. They will then investigate the plasmonic effect of trapping sun light, which in turn increases the energy conversion efficiency. Just as a photon is the quantum of the electromagnetic waves, a plasmon is the quantum of charge waves generated by light.

Manasreh is member of the Institute for Nanoscience and Engineering at the University of Arkansas. His research has focused on experimental and theoretical optoelectronic properties of semiconductors, superlattices, nanostructures and related devices. He has worked extensively with electronic and optoelectronic applications, photovoltaic materials and devices and growth of nanomaterials. His recent work has focused on optoelectronic devices such as multi-color detectors and infrared detectors for focal plane arrays. Since joining the University of Arkansas in 2003, he has received more than $8 million in public research funding. This funding has been used to establish a state-of-the-art research lab with instrumentations ranging from nanomaterial characterization and device fabrication to device testing and evaluation.

####

For more information, please click here

Contacts:
Omar Manasreh, professor, electrical engineering
College of Engineering
479-575-6053


Matt McGowan, science and research communications officer
University Relations
479-575-4246

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Jobs

Secretary Vilsack Announces Partnership to Advance Commercial Potential of Cellulosic Nanomaterial from Wood December 11th, 2013

Cutting Away at the NRC's Research Capability December 6th, 2013

Project aims to mass-produce 'nanopetals' for sensors, batteries October 22nd, 2013

Governor Cuomo Announces 'Nano Utica' $1.5 Billion Public-Private Investment That Will Make the Mohawk Valley New York's Next Major Hub of Nanotech Research October 12th, 2013

Govt.-Legislation/Regulation/Funding/Policy

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Aerospace/Space

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Iranian Nano Scientists Create Flame-Resistant Polymers September 13th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Solar/Photovoltaic

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE