Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Link DNA to Nanostructures

Jin-Woo Kim, University of Arkansas
Jin-Woo Kim, University of Arkansas

Abstract:
Assembly of nanostructures using DNA may lead to the production of new materials with a wide range of applications from electronics to tissue engineering. Researchers in the Institute for Nanoscience and Engineering at the University of Arkansas have produced building blocks for such material by controlling the number, placement and orientation of DNA linkers on the surface of colloidal nanoparticles.

Researchers Link DNA to Nanostructures

Fayetteville, AR | Posted on September 20th, 2011

Their work is featured as the "hot paper" in the current issue of Angewandte Chemie International Edition, the weekly scientific journal of the German Chemical Society.

"We have demonstrated a strategy to place ‘DNA linkers' on a nanoparticle at specific angles relative to each other so that we may produce building blocks with well-defined arrangements of DNA in all dimensions," said Jin-Woo Kim, professor of biological engineering. "The specific number and orientation of DNA strands on the nanoparticles allow greater control over the ultimate shape of nanostructures."

DNA linkers are areas on the nanoparticles that functionally allow connection with other nanoparticles. In this case, connection is achieved through a type of DNA hybridization reaction.

The simple and sustainable strategy involves attaching strands of DNA to functionalized nanoparticles one strand after the other rather than all at the same time. The nanoparticle with the first strand serves as the starting material for the second strand. The nanoparticle with these two strands together serves as the starting material for the third, and so on. In addition to facilitating greater control over the shape of the structure, assembling in this sequential manner renders the process more reproducible and scalable, which helps with the assembly of complex, hybrid nanoscale architectures at all scales and in all dimensions.

The building blocks, which the researchers call "nBLOCKs," remained stable under volatile conditions. They exhibited chemical stability and water solubility during ligand replacement reactions. There were no apparent changes in physical and chemical properties when the building blocks were stored at 4 degrees Celsius for at least a month. Such promising stability shows high potential for their practical application. The researchers continue working on further optimizing their physical and chemical stability.

Kim said the building strategy can be generalized for other types of nanoparticles, meaning that construction of other types of building blocks with specific, desired functions may be achieved. The technology has the potential to transform many fields of research, including biology, medicine, chemistry, physics, materials science and engineering.

The research was supported by the National Science Foundation, the University of Arkansas Division of Agriculture and the Arkansas Biosciences Institute.

The work was a multidisciplinary, collaborative effort with Russell Deaton, professor of computer science and computer engineering. Jeong-Hwan Kim, postdoctoral associate at the Bio/Nano Technology Laboratory, also made a significant contribution to the project.

Jin-Woo Kim is a professor in the Dale Bumpers College of Agricultural, Food and Life Sciences and the College of Engineering. He works in the Institute for Nanoscience and Engineering at the University of Arkansas and directs the Bio/Nano Technology Laboratory.

####

For more information, please click here

Contacts:
Jin-Woo Kim
professor
Biological and Agricultural Engineering
479-575-3402


Matt McGowan
science and research
communications officer
University Relations
479-575-4246

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Physics

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Understanding gravity: The nanoscale search for extra dimensions: A Japan-US research collaboration involving Osaka University uses high-sensitivity experiments to probe exotic gravitational force March 28th, 2018

Chemistry

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Phononic SEIRA -- enhancing light-molecule interactions via crystal lattice vibrations April 10th, 2018

Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials March 21st, 2018

Govt.-Legislation/Regulation/Funding/Policy

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Nanomedicine

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Discoveries

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Materials/Metamaterials

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

Announcements

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Nanobiotechnology

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project