Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Link DNA to Nanostructures

Jin-Woo Kim, University of Arkansas
Jin-Woo Kim, University of Arkansas

Abstract:
Assembly of nanostructures using DNA may lead to the production of new materials with a wide range of applications from electronics to tissue engineering. Researchers in the Institute for Nanoscience and Engineering at the University of Arkansas have produced building blocks for such material by controlling the number, placement and orientation of DNA linkers on the surface of colloidal nanoparticles.

Researchers Link DNA to Nanostructures

Fayetteville, AR | Posted on September 20th, 2011

Their work is featured as the "hot paper" in the current issue of Angewandte Chemie International Edition, the weekly scientific journal of the German Chemical Society.

"We have demonstrated a strategy to place ‘DNA linkers' on a nanoparticle at specific angles relative to each other so that we may produce building blocks with well-defined arrangements of DNA in all dimensions," said Jin-Woo Kim, professor of biological engineering. "The specific number and orientation of DNA strands on the nanoparticles allow greater control over the ultimate shape of nanostructures."

DNA linkers are areas on the nanoparticles that functionally allow connection with other nanoparticles. In this case, connection is achieved through a type of DNA hybridization reaction.

The simple and sustainable strategy involves attaching strands of DNA to functionalized nanoparticles one strand after the other rather than all at the same time. The nanoparticle with the first strand serves as the starting material for the second strand. The nanoparticle with these two strands together serves as the starting material for the third, and so on. In addition to facilitating greater control over the shape of the structure, assembling in this sequential manner renders the process more reproducible and scalable, which helps with the assembly of complex, hybrid nanoscale architectures at all scales and in all dimensions.

The building blocks, which the researchers call "nBLOCKs," remained stable under volatile conditions. They exhibited chemical stability and water solubility during ligand replacement reactions. There were no apparent changes in physical and chemical properties when the building blocks were stored at 4 degrees Celsius for at least a month. Such promising stability shows high potential for their practical application. The researchers continue working on further optimizing their physical and chemical stability.

Kim said the building strategy can be generalized for other types of nanoparticles, meaning that construction of other types of building blocks with specific, desired functions may be achieved. The technology has the potential to transform many fields of research, including biology, medicine, chemistry, physics, materials science and engineering.

The research was supported by the National Science Foundation, the University of Arkansas Division of Agriculture and the Arkansas Biosciences Institute.

The work was a multidisciplinary, collaborative effort with Russell Deaton, professor of computer science and computer engineering. Jeong-Hwan Kim, postdoctoral associate at the Bio/Nano Technology Laboratory, also made a significant contribution to the project.

Jin-Woo Kim is a professor in the Dale Bumpers College of Agricultural, Food and Life Sciences and the College of Engineering. He works in the Institute for Nanoscience and Engineering at the University of Arkansas and directs the Bio/Nano Technology Laboratory.

####

For more information, please click here

Contacts:
Jin-Woo Kim
professor
Biological and Agricultural Engineering
479-575-3402


Matt McGowan
science and research
communications officer
University Relations
479-575-4246

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Physics

Graphene under pressure August 26th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanomedicine

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Discoveries

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Nanobiotechnology

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic