Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > $13-Million NSF Center to Explore New Ways to Manipulate Light at the Nanoscale

Abstract:
A new $13-million National Science Foundation center based at the University of Michigan will develop high-tech materials that manipulate light in new ways. The research could enable advances such as invisibility cloaks, nanoscale lasers, high-efficiency lighting, and quantum computers.

$13-Million NSF Center to Explore New Ways to Manipulate Light at the Nanoscale

Ann Arbor, MI | Posted on September 12th, 2011

The Center for Photonic and Multiscale Nanomaterials, dubbed C-PHOM, involves engineering and physics researchers from the U-M College of Engineering and the College of Literature, Science, and the Arts, as well as close collaborators at Purdue University and several other institutions.

Photonics is the study and use of light to transmit and store information, as well as to image things humans can't see with unaided eyes. It's one of the key technologies underlying modern life, says Ted Norris, director of the new center and a U-M professor in the Department of Electrical Engineering and Computer Science.

Photonics provides the high-speed backbone of the Internet through fiber optics. It serves as a ubiquitous tool for medical imaging. And it enables the study of the most exotic ideas in quantum physics, such as entanglement and quantum computing.

"Advances in photonics depend critically on new materials, and this new center brings together top minds in electrical engineering, materials science, and physics to focus on two of the most exciting new directions in materials for nanophotonics," Norris said. "The cross-campus collaboration will enable fundamental advances."

The center has two thrusts. One group will focus on improving "wide bandgap semiconductors" such as gallium nitride, which could make possible quantum emitters that release one photon, or light particle, at a time and could advance quantum computing and quantum information processing.

Quantum computers could vastly improve computer security. Because they could theoretically factor numbers dramatically faster than conventional computers, they could allow for the creation of foolproof security codes. This research thrust also has applications in high-efficiency lighting and imaging. Leading this group is Pallab Bhattacharya, the Charles M. Vest Distinguished University Professor, and a professor in the U-M Department of Electrical Engineering and Computer Science.

A second group of researchers will develop better metamaterials, uniquely engineered mixtures of substances that enable scientists to make light act in ways it does not behave in nature. For example, metamaterials make it possible to focus light to a speck smaller than its wavelength, They could potentially be used to bend light around objects, making them invisible. They could also bring about "ultra subwavelength imaging" to see inside biological cells with unprecedented resolution. Leading this group is Roberto Merlin, the Peter A. Franken Collegiate Professor of Physics at U-M. His team will work in close collaboration with researchers at Purdue.

The center will be located in the U-M Engineering Research Building on North Campus.

Other institutions involved in the new center are: Wayne State University, the City University of New York's Queens College, the University of Texas at Austin, the University of Illinois at Urbana-Champagne, and Argonne and Sandia national laboratories.

####

For more information, please click here

Contacts:
Nicole Casal Moore
(734) 647-7087


Catharine June
(734) 936-2965


Carol Rabuck
(734) 763-2588

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Ted Norris:

Pallab Bhattacharya:

Roberto Merlin:

Related News Press

News and information

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Display technology/LEDs/SS Lighting/OLEDs

Copper shines as flexible conductor August 29th, 2014

LEDs made from ‘wonder material’ perovskite: Colourful LEDs made from a material known as perovskite could lead to LED displays which are both cheaper and easier to manufacture in future August 5th, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Quantum Computing

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Photonics/Optics/Lasers

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Research partnerships

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE