Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > $13-Million NSF Center to Explore New Ways to Manipulate Light at the Nanoscale

Abstract:
A new $13-million National Science Foundation center based at the University of Michigan will develop high-tech materials that manipulate light in new ways. The research could enable advances such as invisibility cloaks, nanoscale lasers, high-efficiency lighting, and quantum computers.

$13-Million NSF Center to Explore New Ways to Manipulate Light at the Nanoscale

Ann Arbor, MI | Posted on September 12th, 2011

The Center for Photonic and Multiscale Nanomaterials, dubbed C-PHOM, involves engineering and physics researchers from the U-M College of Engineering and the College of Literature, Science, and the Arts, as well as close collaborators at Purdue University and several other institutions.

Photonics is the study and use of light to transmit and store information, as well as to image things humans can't see with unaided eyes. It's one of the key technologies underlying modern life, says Ted Norris, director of the new center and a U-M professor in the Department of Electrical Engineering and Computer Science.

Photonics provides the high-speed backbone of the Internet through fiber optics. It serves as a ubiquitous tool for medical imaging. And it enables the study of the most exotic ideas in quantum physics, such as entanglement and quantum computing.

"Advances in photonics depend critically on new materials, and this new center brings together top minds in electrical engineering, materials science, and physics to focus on two of the most exciting new directions in materials for nanophotonics," Norris said. "The cross-campus collaboration will enable fundamental advances."

The center has two thrusts. One group will focus on improving "wide bandgap semiconductors" such as gallium nitride, which could make possible quantum emitters that release one photon, or light particle, at a time and could advance quantum computing and quantum information processing.

Quantum computers could vastly improve computer security. Because they could theoretically factor numbers dramatically faster than conventional computers, they could allow for the creation of foolproof security codes. This research thrust also has applications in high-efficiency lighting and imaging. Leading this group is Pallab Bhattacharya, the Charles M. Vest Distinguished University Professor, and a professor in the U-M Department of Electrical Engineering and Computer Science.

A second group of researchers will develop better metamaterials, uniquely engineered mixtures of substances that enable scientists to make light act in ways it does not behave in nature. For example, metamaterials make it possible to focus light to a speck smaller than its wavelength, They could potentially be used to bend light around objects, making them invisible. They could also bring about "ultra subwavelength imaging" to see inside biological cells with unprecedented resolution. Leading this group is Roberto Merlin, the Peter A. Franken Collegiate Professor of Physics at U-M. His team will work in close collaboration with researchers at Purdue.

The center will be located in the U-M Engineering Research Building on North Campus.

Other institutions involved in the new center are: Wayne State University, the City University of New York's Queens College, the University of Texas at Austin, the University of Illinois at Urbana-Champagne, and Argonne and Sandia national laboratories.

####

For more information, please click here

Contacts:
Nicole Casal Moore
(734) 647-7087


Catharine June
(734) 936-2965


Carol Rabuck
(734) 763-2588

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Ted Norris:

Pallab Bhattacharya:

Roberto Merlin:

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Display technology/LEDs/SS Lighting/OLEDs

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Manipulating light inside opaque layers April 24th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

What screens are made of: New twists (and bends) in LCD research: X-ray research at Berkeley Lab details exotic structure formed by liquid crystals April 19th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Quantum Computing

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Photonics/Optics/Lasers

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Research partnerships

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic