Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > High-performance devices using organic semiconductors

September 7th, 2011

High-performance devices using organic semiconductors

Abstract:
Synthetic control over the molecular constituents of organic semiconductors allows unprecedented control over their aggregate solid-state properties. Band-gap-like and band-edge-like properties can be tuned, seemingly at will (through the sweat and toil of brilliant synthetic chemists). This power comes, however, with a Faustian bargain. In contrast to inorganic semiconductors where atoms fully concede their individuality to collective quantum states, resulting in charge-carrier mobilities measuring in the hundreds to over a thousand square centimeters per volt second (cm2/VĚs), the molecular individuality retained in organic semiconductors leads to localization and mobilities typically amounting to less than 3cm2/VĚs. That creates a problem for applications requiring appreciable currents such as, for example, organic LEDs (OLEDs).

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Display technology/LEDs/SS Lighting/OLEDs

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Chip Technology

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project