Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > News > High-performance devices using organic semiconductors

September 7th, 2011

High-performance devices using organic semiconductors

Abstract:
Synthetic control over the molecular constituents of organic semiconductors allows unprecedented control over their aggregate solid-state properties. Band-gap-like and band-edge-like properties can be tuned, seemingly at will (through the sweat and toil of brilliant synthetic chemists). This power comes, however, with a Faustian bargain. In contrast to inorganic semiconductors where atoms fully concede their individuality to collective quantum states, resulting in charge-carrier mobilities measuring in the hundreds to over a thousand square centimeters per volt second (cm2/VĚs), the molecular individuality retained in organic semiconductors leads to localization and mobilities typically amounting to less than 3cm2/VĚs. That creates a problem for applications requiring appreciable currents such as, for example, organic LEDs (OLEDs).

Source:
spie.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Display technology/LEDs/SS Lighting/OLEDs

Researchers develop faster, precise silica coating process for quantum dot nanorods July 12th, 2016

Integrated trio of 2-D nanomaterials unlocks graphene electronics applications: Voltage-controlled oscillator developed at UC Riverside could be used in thousands of applications from computers to wearable technologies July 7th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Chip Technology

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Announcements

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic