Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Toyohashi Tech researchers develop a low cost and efficient method for producing electrically conducting composites based on electrostatic adsorption of CNTs onto resin and ceramic particles for applications including the production of enzymes and cosmetics.

Cross-section of PMMA resin composite material showing the networks of CNTs on the surfaces of the resin particles. The CNTs are added to induce electrical conductivity.
Cross-section of PMMA resin composite material showing the networks of CNTs on the surfaces of the resin particles. The CNTs are added to induce electrical conductivity.

Abstract:
Hiroyuki Muto and colleagues at Japan's Toyohashi University of Technology (Toyohashi Tech) have developed an innovative method for producing CNT (carbon nano-tube) resin composite material [1] that only requires 1/100 [2] of the conventional amount of CNT additive to produce electrical conductivity in the composite material.

Toyohashi Tech researchers develop a low cost and efficient method for producing electrically conducting composites based on electrostatic adsorption of CNTs onto resin and ceramic particles for applications including the production of enzymes and cosmetics.

Toyohashi, Japan | Posted on September 4th, 2011

In this method, CNTs were mixed in an electrolyte solution and added to the composite, where the CNTs were adsorbed onto the surfaces of the resin particles due to electrostatic adsorption [3]. This innovative procedure enabled the production of electrical conducting composites by the addition of a small quantity CNTs.

Importantly, the electrical conductivity of the composite material was easily controlled by changing the amount of electrolyte added to the composite; namely, the concentration of CNTs adsorption onto the resin particles.

Notably, this approach enables significant reductions in both the production costs and the production time compared with conventional methods for manufacturing conductive resins.

The researchers are confident that adding particles with charged surfaces will enable the production of a wide range of composite materials such as metals, ceramics, and polymers. This method is expected to find applications in the production of enzymes and cosmetics.

This work is supported by a Grant-in-Aid for Young Scientists at NEDO (New Energy and Industrial Technology Development Organization).

[1] This is a composite material comprising of resin particle with the addition CNTs. By utilizing the high conductivity of CNTs, practical products such as robust, anti-static components for clean rooms in the electronics industry, could be manufactured. The ability to control the electrical conductivity of the composite materials by this production method is expected to lead to a wide range of applications in the electronics industry, including use as alternatives for indium-tin-oxide transparent conductive film for displays, as plates for rechargeable batteries, and in semiconductor devices. Furthermore, the composite resin particles can be used in the production of for plastic materials, such as injection molding or extrusion.

[2] When imparting electrical conductivity to insulating ceramics or polymer materials, the introduction of conducting additive materials that can be linked within the resin structure is required. In conventional methods, the amount of additive is greater than 1% by weight. However, this new method only requires the addition of 0.01% CNT to impart conductivity.

[3] This method adsorbs CNTs onto the matrix resin particles by an electrostatic attractive force, which is a result of charging them positive or negative in appropriate electrolyte solutions. By controlling the concentration of the electrolyte solution added to the composite, the charge-volume of the surfaces of the particles can be changed, thus controlling the degree of adsorption of the CNTs.

####

About Toyohashi University of Technology
Founded in 1976, Toyohashi University of Technology is a vibrant modern institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.

For more information, please click here

Contacts:
Ms. Junko Sugaya and Mr. Masashi Yamaguchi
International Affairs Division
TEL: (+81) 0532-44-2042; FAX: (+81)0532-44-6557

Copyright © Toyohashi University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic