Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Toyohashi Tech researchers develop a low cost and efficient method for producing electrically conducting composites based on electrostatic adsorption of CNTs onto resin and ceramic particles for applications including the production of enzymes and cosmetics.

Cross-section of PMMA resin composite material showing the networks of CNTs on the surfaces of the resin particles. The CNTs are added to induce electrical conductivity.
Cross-section of PMMA resin composite material showing the networks of CNTs on the surfaces of the resin particles. The CNTs are added to induce electrical conductivity.

Abstract:
Hiroyuki Muto and colleagues at Japan's Toyohashi University of Technology (Toyohashi Tech) have developed an innovative method for producing CNT (carbon nano-tube) resin composite material [1] that only requires 1/100 [2] of the conventional amount of CNT additive to produce electrical conductivity in the composite material.

Toyohashi Tech researchers develop a low cost and efficient method for producing electrically conducting composites based on electrostatic adsorption of CNTs onto resin and ceramic particles for applications including the production of enzymes and cosmetics.

Toyohashi, Japan | Posted on September 4th, 2011

In this method, CNTs were mixed in an electrolyte solution and added to the composite, where the CNTs were adsorbed onto the surfaces of the resin particles due to electrostatic adsorption [3]. This innovative procedure enabled the production of electrical conducting composites by the addition of a small quantity CNTs.

Importantly, the electrical conductivity of the composite material was easily controlled by changing the amount of electrolyte added to the composite; namely, the concentration of CNTs adsorption onto the resin particles.

Notably, this approach enables significant reductions in both the production costs and the production time compared with conventional methods for manufacturing conductive resins.

The researchers are confident that adding particles with charged surfaces will enable the production of a wide range of composite materials such as metals, ceramics, and polymers. This method is expected to find applications in the production of enzymes and cosmetics.

This work is supported by a Grant-in-Aid for Young Scientists at NEDO (New Energy and Industrial Technology Development Organization).

[1] This is a composite material comprising of resin particle with the addition CNTs. By utilizing the high conductivity of CNTs, practical products such as robust, anti-static components for clean rooms in the electronics industry, could be manufactured. The ability to control the electrical conductivity of the composite materials by this production method is expected to lead to a wide range of applications in the electronics industry, including use as alternatives for indium-tin-oxide transparent conductive film for displays, as plates for rechargeable batteries, and in semiconductor devices. Furthermore, the composite resin particles can be used in the production of for plastic materials, such as injection molding or extrusion.

[2] When imparting electrical conductivity to insulating ceramics or polymer materials, the introduction of conducting additive materials that can be linked within the resin structure is required. In conventional methods, the amount of additive is greater than 1% by weight. However, this new method only requires the addition of 0.01% CNT to impart conductivity.

[3] This method adsorbs CNTs onto the matrix resin particles by an electrostatic attractive force, which is a result of charging them positive or negative in appropriate electrolyte solutions. By controlling the concentration of the electrolyte solution added to the composite, the charge-volume of the surfaces of the particles can be changed, thus controlling the degree of adsorption of the CNTs.

####

About Toyohashi University of Technology
Founded in 1976, Toyohashi University of Technology is a vibrant modern institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.

For more information, please click here

Contacts:
Ms. Junko Sugaya and Mr. Masashi Yamaguchi
International Affairs Division
TEL: (+81) 0532-44-2042; FAX: (+81)0532-44-6557

Copyright © Toyohashi University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies Names NanoSperse as A SWeNT Certified Compounder July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

Nanomedicine

New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Discoveries

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Materials/Metamaterials

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Personal Care

Nanotechnology used in sunscreens: a Mexican achievement May 14th, 2014

Production of Nanocapsule from Sea-Buckthorn Extract in Iran May 3rd, 2014

Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles April 1st, 2014

Iranian Food Industry Utilizes Lipid Nanocarriers for Beta-Carotene Enrichment January 23rd, 2014

Nanobiotechnology

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE