Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists develop new technologies for understanding bacterial infections: New approach for studying molecules within their natural environment

Abstract:
Understanding how bacteria infect cells is crucial to preventing countless human diseases. In a recent breakthrough, scientists from the University of Bristol have discovered a new approach for studying molecules within their natural environment, opening the door to understanding the complexity of how bacteria infect people.

Scientists develop new technologies for understanding bacterial infections: New approach for studying molecules within their natural environment

Bristol, England | Posted on August 29th, 2011

The research, led by a team of biochemists, microbiologists and physicists and published in the Proceedings of the National Academy of Sciences (PNAS), provides an unprecedented level of detail of the consequences of a bacterium approaching another cell, directly in situ.

Until now, traditional approaches to understanding infection have focused on either studies of the cells involved or dissection of individual molecules present within the cells. Leo Brady, Professor of Biochemistry and Mumtaz Virji, Professor of Molecular Microbiology, who led the research, have developed a novel method for bridging these, until now, separate approaches.

The team studied the common bacterium Moraxella catarrhalis, which causes middle ear infections in young children, and is a major cause of morbidity in those with heart disease. For many years, scientists approached this problem from the molecular medicine approach — through isolating and studying proteins from the Moraxella cell surface that initiate infection.

From these detailed studies the team have been able to develop an overview of one of the key proteins, called UspA1. However, as with the vast majority of molecular medicine approaches, this model has been based on studies of the UspA1 protein in isolation, rather than in its natural setting on the bacterium surface. A common worry for many biomedical scientists is how such understanding translates into the reality of these tiny molecules when they are part of a much larger cell. Understanding the increased complexity of individual molecules within the cellular mêlée is crucial to understanding why many promising drugs fail to live up to expectations.

To begin bridging this gap in our understanding, Professors Brady and Virji teamed up with Dr Massimo Antognozzi from the University's School of Physics, whose group have been developing a novel form of atomic force microscope, termed the lateral molecular force microscope (LMFM).

Together, they have evolved the design of the LMFM microscope to optimise its ability to measure biological phenomena such as changes in UspA1 directly at the Moraxella cell surface. The LMFM differs from more conventional atomic force microscopes in tapping samples (in this case, individual cells) against an extremely fine lever, equivalent to the stylus of a record player, rather than moving the lever as is usually the case. Fabrication of extremely thin but stiff cantilevers together with exceptionally fine motor movements and a specialised visualisation system have all been combined in the device to tremendous effect. The sensitivity achieved has been further enhanced by its location within the extremely low vibration environment provided within the University's innovative Nanoscience and Quantum Information building. The result has been a machine that can measure exquisitely fine molecular changes and forces in individual molecules directly on a living cell surface.

In the Moraxella study, this development has enabled the research team to correlate intricate, atomic level detail of UspA1 obtained by X-ray crystallography of isolated fragments of the protein with delicate and previously unobservable physical changes of the bacterial cell as it binds to and infects its target human cells.

Professor Brady said: "The findings have triggered the development of a novel technology that promises to open up a new approach for studying molecular medicine. This breakthrough will undoubtedly prove equally useful for the study of many other biological processes directly within their cellular environment, something that has long been needed in molecular medicine."

This combined study has enabled the researchers to observe the very first responses as a bacterium binds to a human cell, hence opening the door to understanding the complexity of infection processes.

The UspA1 LMFM studies have been funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council (BBSRC) and are published today [29 Aug] in the journal Proceedings of the National Academy of Sciences (PNAS).

####

For more information, please click here

Contacts:
Caroline Clancy

44-077-761-70238

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Tools

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE