Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flexible electronics hold promise for consumer applications: New research into organic semiconductors advances field

Abstract:
New research from Wake Forest University has advanced the field of plastic-based flexible electronics by developing, for the first time, an extremely large molecule that is stable, possesses excellent electrical properties, and inexpensive to produce.

Flexible electronics hold promise for consumer applications: New research into organic semiconductors advances field

Winston-Salem, NC | Posted on August 29th, 2011

The technology, developed by Oana Jurchescu, assistant professor of physics at Wake Forest, her graduate students Katelyn Goetz and Jeremy Ward, and interdisciplinary collaborators from Stanford University, Imperial College (London), University of Kentucky and Appalachian State University, eventually may turn scientific wonders - including artificial skin, smart bandages, flexible displays, smart windshields, wearable electronics and electronic wallpapers - into everyday realities.

Jurchescu says plastic or organic semiconductors, produced in large volume using roll-to-roll processing, inkjet printing or spray deposition, represent the "electronics everywhere" trend of the future.

In the current consumer market, however, the word "electronic" is generally associated with the word "expensive." This is largely because products such as televisions, computers and cell phones are based on silicon, which is costly to produce. Organic electronics, however, build on carbon-based (plastic) materials, which offer not only ease of manufacturing and low cost, but also lightweight and mechanical flexibility, says Jurchescu.

The team recently published its manuscript in Advanced Materials, one of the most prestigious journals in the field of materials research.

Prior researchers predicted that larger carbon frameworks would have properties superior to their smaller counterparts, but until now there has not been an effective route to make these larger frameworks stable and soluble enough for study.

"To accelerate the use of these technologies, we need to improve our understanding of how they work," Jurchescu says. "The devices we study (field-effect transistors) are the fundamental building blocks in all modern-based electronics. Our findings shed light on the effect of the structure of the molecules on their electrical performance, and pave the way towards a design of improved materials for high-performance, low-cost, plastic-based electronics."

Jurchescu's lab is part of the physics department and the Center for Nanotechnology and Molecular Materials.

The team studied new organic semiconductor materials amenable to transistor applications and explored their structure-property relationships. Organic semiconductors are a type of plastic material characterized by a specific structure that makes them conductive. In modern electronics, a circuit uses transistors to control the current between various regions of the circuit.

The results of the published research may lead to significant technological improvements as the performance of the transistor determines the switching speed, contrast details, and other key properties of the display.

####

For more information, please click here

Contacts:
Kimberly McGrath

336-758-3209

Copyright © Wake Forest University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Flexible Electronics

Stretchy supercapacitors power wearable electronics August 25th, 2016

See-through circuitry: New method makes AZO a viable and cheap alternative for transparent electronics August 15th, 2016

Display technology/LEDs/SS Lighting/OLEDs

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Towards a better screen; New molecules promise cheaper, more efficient OLED displays August 9th, 2016

Chip Technology

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Automotive/Transportation

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Researchers watch catalysts at work August 19th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic