Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Selective CVD growth of GeSn: a new approach for implementing stress in Ge based MOSFETs

Cross-section TEM and 224 XRD-RSM of fully strained defect-free GeSn layers grown on a Ge substrate.
Cross-section TEM and 224 XRD-RSM of fully strained defect-free GeSn layers grown on a Ge substrate.

Abstract:
Imec reports for the first time selective chemical vapor deposition (CVD) of GeSn in a production-like environment using commercially available Ge and Sn precursors. The resulting GeSn layers with 8% Sn are defect free, fully strained and thermally stable for temperatures up to 500°C. This technique is used to implement uniaxial compressive stress in a Ge channel, the key method for reaching very high mobility values in MOSFETs.

Selective CVD growth of GeSn: a new approach for implementing stress in Ge based MOSFETs

Leuven, Belgium | Posted on August 23rd, 2011

Ge as a high mobility channel material has attracted much interest for future CMOS applications where it could potentially replace Si in pMOSFETs. High mobility values can be obtained by stress engineering in the Ge channel. Imec now presents an innovative concept for implementing uniaxial compressive stress in Ge channels by boron doped selective epitaxial growth of GeSn CVD in embedded source/drain areas*. The technique has been demonstrated in a 200mm production-like environment, and is expected to be easily transferable into a 300mm environment.

Key of this technique is a new approach for growing GeSn in a CVD environment. CVD growth of GeSn has so far only been reported by using SnD4 as a Sn gas precursor, but the instability of this precursor restricts the applicability of the technique. Imec uses the stable SnCl4 and Ge2H6 as commercially available Sn and Ge precursors respectively. This permits the growth of GeSn layers on a Ge surface with Sn content up to 8%. As shown by transmission electron microscopy (TEM), no defects are found in the 40nm GeSn layer and according to x-ray diffraction reciprocal space mapping (XRD-RSM) measurements, the layer is fully strained. The GeSn layer grown with this approach survives to further thermal treatments at temperatures up 500°C (for 10 minutes). In addition, in-situ boron (B) doped GeSn CVD growth was investigated by using a combination of Ge2H6, SnCl4 and B2H6 precursors. B was found to be 100% electrically active in GeSn:B layers grown with a B concentration of 1.7e19cm-3.

The CVD grown GeSn layer can also be used as a high-mobility channel material on Ge. A strained GeSn channel on Ge is a possible candidate to be used in the device channel of future Ge based MOSFET devices. In this work, first working GeSn capacitors were realized by depositing Al2O3 on the CVD grown GeSn layers**.

The CVD growth of GeSn with commercially available precursors will boost the research on high-mobility MOSFETs. Besides, it opens new routes for group-IV semiconductors research in other fields, such as photonics (having indirect-to-direct-bandgap transition expected for about 10% Sn incorporated in monocrystalline GeSn allys) and photovoltaics (ternary SiGeSn alloys).

More detailed results can be found in *B. Vincent et al., Microelec. Eng. 88 (2011) 342 and in **B. Vincent et al., Electrochem. Soc. Trans. 2011 (accepted for publication).

####

About IMEC
Imec performs world-leading research in nano-electronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, USA, China and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 281 769
Mobile: +32 486 065 175

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Chip Technology

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Discoveries

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Announcements

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

New research points to graphene as a flexible, low-cost touchscreen solution September 19th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Tools

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE