Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ultra-low-power readout architecture for MEMS/NEMS sensors

Figure MEMSreadout: Microphotographs of the accelerometer, strain sensor and readout ASIC and topology of a single channel capacitive readout.
Figure MEMSreadout: Microphotographs of the accelerometer, strain sensor and readout ASIC and topology of a single channel capacitive readout.

Abstract:
Imec and Holst Centre report an ultralow-power readout ASIC for capacitive MEMS/NEMS-based sensors. The system can read both accelerometers and strain sensors in a half-bridge configuration. The gain is controlled by integrating pulses from the excitation voltage allowing accurate control of the SNR (signal-to-noise) ratio. We achieved a figure-of-merit of 4.41×10-20 F√(W/Hz) for a sensor range of ±2.0g and ±20,000με over a 100Hz bandwidth. The system has also been designed to cancel residual motion artifacts.

Ultra-low-power readout architecture for MEMS/NEMS sensors

Leuven, Belgium | Posted on August 22nd, 2011

With the growing number of MEMS sensors for all types of applications, there is a need for innovative, flexible and power-efficient readout architectures. These have to be able to read signals from a wide range of capacitive devices (such as accelerometers and strain sensors with different actuation voltages, sensitivities and resolutions). One particular interesting application field is the monitoring of building integrity, where the sensors have to measure displacements and stresses, as an indication for the integrity of structures during e.g. seismic events. Such applications impose resolution requirements of 1mg and 10με for the accelerometer and strain sensor respectively, and a range of ±2.0g and ±20,000με over a 100Hz bandwidth.

Most of the existing readout chips are custom-made for a particular sensor, which usually has a large sensitivity in a narrow band. Our architecture can interface with a variety of sensors without jeopardizing the power consumption. This is important for monitoring building integrity, which requires battery-operated systems to keep working for several years. It's also a cost-effective solution, since the same readout can be used for both accelerometers and strain sensors. Last, the system's flexibility is a major asset: sensors with different sensitivities, offsets and mismatch can easily be handled by modifying the timing and duty cycle of the excitation pulses.

Our readout architecture has the lowest reported equivalent acceleration noise level and the highest bandwidth. It offers a unique tradeoff between SNR, bandwidth, and power. The design was fabricated on TSMC 0.25μm CMOS with metal-insulator-metal capacitors. The total power consumption of the 3 channels is 15μW. The clock and excitation voltages for the sensors are external.

####

About IMEC
Imec performs world-leading research in nano-electronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, USA, China and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 281 769
Mobile: +32 486 065 175

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

NEMS

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Investigation of Mechanical Behavior of Heterogeneous Nanostructures in Iran July 13th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

MEMS

STMicroelectronics Keynotes on the Next MEMS Wave at MIG Conference Asia September 2nd, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Sensors

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Setting ground rules for nanotechnology research: Two new projects set the stage for nanotechnology research to move into Big Data August 18th, 2015

Discoveries

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic