Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ultra-low-power readout architecture for MEMS/NEMS sensors

Figure MEMSreadout: Microphotographs of the accelerometer, strain sensor and readout ASIC and topology of a single channel capacitive readout.
Figure MEMSreadout: Microphotographs of the accelerometer, strain sensor and readout ASIC and topology of a single channel capacitive readout.

Abstract:
Imec and Holst Centre report an ultralow-power readout ASIC for capacitive MEMS/NEMS-based sensors. The system can read both accelerometers and strain sensors in a half-bridge configuration. The gain is controlled by integrating pulses from the excitation voltage allowing accurate control of the SNR (signal-to-noise) ratio. We achieved a figure-of-merit of 4.41×10-20 F√(W/Hz) for a sensor range of ±2.0g and ±20,000με over a 100Hz bandwidth. The system has also been designed to cancel residual motion artifacts.

Ultra-low-power readout architecture for MEMS/NEMS sensors

Leuven, Belgium | Posted on August 22nd, 2011

With the growing number of MEMS sensors for all types of applications, there is a need for innovative, flexible and power-efficient readout architectures. These have to be able to read signals from a wide range of capacitive devices (such as accelerometers and strain sensors with different actuation voltages, sensitivities and resolutions). One particular interesting application field is the monitoring of building integrity, where the sensors have to measure displacements and stresses, as an indication for the integrity of structures during e.g. seismic events. Such applications impose resolution requirements of 1mg and 10με for the accelerometer and strain sensor respectively, and a range of ±2.0g and ±20,000με over a 100Hz bandwidth.

Most of the existing readout chips are custom-made for a particular sensor, which usually has a large sensitivity in a narrow band. Our architecture can interface with a variety of sensors without jeopardizing the power consumption. This is important for monitoring building integrity, which requires battery-operated systems to keep working for several years. It's also a cost-effective solution, since the same readout can be used for both accelerometers and strain sensors. Last, the system's flexibility is a major asset: sensors with different sensitivities, offsets and mismatch can easily be handled by modifying the timing and duty cycle of the excitation pulses.

Our readout architecture has the lowest reported equivalent acceleration noise level and the highest bandwidth. It offers a unique tradeoff between SNR, bandwidth, and power. The design was fabricated on TSMC 0.25μm CMOS with metal-insulator-metal capacitors. The total power consumption of the 3 channels is 15μW. The clock and excitation voltages for the sensors are external.

####

About IMEC
Imec performs world-leading research in nano-electronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, USA, China and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 281 769
Mobile: +32 486 065 175

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

NEMS

Weighing -- and imaging -- molecules one at a time April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

MEMS

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

MEMS Industry Group Hosts Its First MEMS/Sensors Conference Session at Transducers 2015: MIG Speakers Will Explore Technology Transfer, Emerging MEMS/Sensors, Manufacturing Infrastructure and Process Technology, June 23 in Anchorage June 3rd, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Sensors

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Discoveries

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project