Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A new set of building blocks for simple synthesis of complex molecules

Photo by Becky Duffield

Graduate student Seiko Fujii and chemistry professor Martin Burke developed a novel class of chemical “building blocks” to more efficiently synthesize complex molecules, such as the antioxidant synechoxanthin.
Photo by Becky Duffield

Graduate student Seiko Fujii and chemistry professor Martin Burke developed a novel class of chemical “building blocks” to more efficiently synthesize complex molecules, such as the antioxidant synechoxanthin.

Abstract:
Assembling chemicals can be like putting together a puzzle. University of Illinois chemists have developed a way of fitting the pieces together to more efficiently build complex molecules, beginning with a powerful and promising antioxidant.

A new set of building blocks for simple synthesis of complex molecules

Champaign, IL | Posted on August 22nd, 2011

Led by chemistry professor Martin Burke, the team published its research on the cover of the chemistry journal Angewandte Chemie.

Burke's group is known for developing a synthesis technique called iterative cross-coupling (ICC) that uses simple, stable chemical "building blocks" sequentially joined in a repetitive reaction. With more than 75 of the building blocks available commercially, pharmaceutical companies and other laboratories use ICC to create complex small molecules that could have medicinal properties.

"There's pre-installed functionality and stereochemistry, so everything is set in the building blocks, and all you have to do is couple them together," said graduate student Seiko Fujii, the first author of the paper.

However, ICC has been limited to only molecules with one type of polarity. Now, the group has developed reverse-polarity ICC, which allows a chemist to optimize the ICC process to match the target molecules' electronic structure. The reversal in polarity enables a whole new class of building blocks, so researchers can synthesize molecules more efficiently and even construct molecules that standard ICC cannot.

For example, in the paper, the group used the new method to make synechoxanthin (pronounced sin-ecko-ZAN-thin), a molecule first isolated from bacteria in 2008 that shows great promise as an antioxidant. Studies suggest that synechoxanthin allows the bacteria that produce it to live and thrive in highly oxidative environments.

"We as humans experience a lot of oxidative stress, and it can be really deleterious to human health," said Burke, who also is affiliated with the Howard Hughes Medical Institute. "It can lead to diseases like cancer and atherosclerosis and neurodegenerative disorders. Evidence strongly suggests that synechoxanthin is a major part of the bacteria's solution to this problem. We're excited to ask the question, what can we learn from the bug? Can it also protect a human cell?"

Studies on the activity of synechoxanthin have been limited by the difficulty of extracting the molecule from bacterial cultures. Burke's group successfully synthesized it from a mere three types of readily available, highly stable, non-toxic building blocks. Thanks to the ease of ICC, they can produce relatively large quantities of synechoxanthin for study as well as derivatives to test against the natural product.

"Because this building-block-based design is inherently flexible, once we've made the natural product, we can make any derivative we want simply by swapping in one different building block, and then using the reverse-polarity ICC to snap them together," Burke said. "That's where synthesis is so powerful. Oftentimes, the cleanest experiment will require a molecule that doesn't exist, unless you can piece it together."

Researchers can also use blocks that have been "tagged" with a fluorescent or radioactive dye to make it easier to study the molecule and its activity. For example, Fujii next plans to synthesize both synechoxanthin and its apolar derivative with tags so that NMR imaging can reveal its location and orientation within a cell's membrane, possibly providing clues to its activity.

"After we have all these molecules in hand, we're really excited to test the antioxidant activity of them in a model membrane," Fujii said.

The National Institutes of Health and the Howard Hughes Medical Institute supported this work.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Martin Burke
217-244-8726

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Total Synthesis of Synechoxanthin through Iterative Cross-Coupling,” is available online.

Related News Press

News and information

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Imaging

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Chemistry

The gold standard December 9th, 2014

Simple, Biocompatible Method Developed for Production of Cerium Oxide Nanoparticles December 9th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Discoveries

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Announcements

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE