Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano bundles pack a powerful punch: Solid-state energy storage takes a leap forward at Rice University

A method developed at Rice University allows bundles of vertically aligned single-wall carbon nanotubes to be transferred intact to a conductive substrate. Metallic layers added via atomic layer deposition create a solid-state supercapacitor that can stand up in extreme environments. (Credit: Hauge Lab/Rice University)
A method developed at Rice University allows bundles of vertically aligned single-wall carbon nanotubes to be transferred intact to a conductive substrate. Metallic layers added via atomic layer deposition create a solid-state supercapacitor that can stand up in extreme environments. (Credit: Hauge Lab/Rice University)

Abstract:
Rice University researchers have created a solid-state, nanotube-based supercapacitor that promises to combine the best qualities of high-energy batteries and fast-charging capacitors in a device suitable for extreme environments.

Nano bundles pack a powerful punch: Solid-state energy storage takes a leap forward at Rice University

Houston, TX | Posted on August 22nd, 2011

A paper from the Rice lab of chemist Robert Hauge, to be published in the journal Carbon, reported the creation of robust, versatile energy storage that can be deeply integrated into the manufacture of devices. Potential uses span on-chip nanocircuitry to entire power plants.

Standard capacitors that regulate flow or supply quick bursts of power can be discharged and recharged hundreds of thousands of times. Electric double-layer capacitors (EDLCs), generally known as supercapacitors, are hybrids that hold hundreds of times more energy than a standard capacitor, like a battery, while retaining their fast charge/discharge capabilities.

But traditional EDLCs rely on liquid or gel-like electrolytes that can break down in very hot or cold conditions. In Rice's supercapacitor, a solid, nanoscale coat of oxide dielectric material replaces electrolytes entirely.

The researchers also took advantage of scale. The key to high capacitance is giving electrons more surface area to inhabit, and nothing on Earth has more potential for packing a lot of surface area into a small space than carbon nanotubes.

When grown, nanotubes self-assemble into dense, aligned structures that resemble microscopic shag carpets. Even after they're turned into self-contained supercapacitors, each bundle of nanotubes is 500 times longer than it is wide. A tiny chip may contain hundreds of thousands of bundles.

For the new device, the Rice team grew an array of 15-20 nanometer bundles of single-walled carbon nanotubes up to 50 microns long. Hauge, a distinguished faculty fellow in chemistry, led the effort with former Rice graduate students Cary Pint, first author of the paper and now a researcher at Intel, and Nolan Nicholas, now a researcher at Matric.

The array was then transferred to a copper electrode with thin layers of gold and titanium to aid adhesion and electrical stability. The nanotube bundles (the primary electrodes) were doped with sulfuric acid to enhance their conductive properties; then they were covered with thin coats of aluminum oxide (the dielectric layer) and aluminum-doped zinc oxide (the counterelectrode) through a process called atomic layer deposition (ALD). A top electrode of silver paint completed the circuit.

"Essentially, you get this metal/insulator/metal structure," said Pint. "No one's ever done this with such a high-aspect-ratio material and utilizing a process like ALD."

Hauge said the new supercapacitor is stable and scaleable. "All solid-state solutions to energy storage will be intimately integrated into many future devices, including flexible displays, bio-implants, many types of sensors and all electronic applications that benefit from fast charge and discharge rates," he said.

Pint said the supercapacitor holds a charge under high-frequency cycling and can be naturally integrated into materials. He envisioned an electric car body that is a battery, or a microrobot with an onboard, nontoxic power supply that can be injected for therapeutic purposes into a patient's bloodstream.

Pint said it would be ideal for use under the kind of extreme conditions experienced by desert-based solar cells or in satellites, where weight is also a critical factor. "The challenge for the future of energy systems is to integrate things more efficiently. This solid-state architecture is at the cutting edge," he said.

Co-authors of the paper include graduate student Zhengzong Sun; James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science, and Howard Schmidt, adjunct assistant professor of chemical and biomolecular engineering, all of Rice; Sheng Xu, a former graduate student at Harvard; and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry at Harvard University, who developed ALD.

The research was supported by T.J. Wainerdi and Quantum Wired, in coordination with the Houston Area Research Council; the Office of Naval Research MURI program; the Wright Patterson Air Force Laboratory and the National Science Foundation.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Discoveries

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Announcements

Nano-supercapacitors for electric cars July 25th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Military

New imaging agent provides better picture of the gut July 25th, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Aerospace/Space

National Space Society Calls For Less US Dependence On Russian Space Technology July 15th, 2014

Motorized Miniature Screw-Actuator Provides 20 nm Resolution, Based on Piezo Effect July 8th, 2014

NSS Pays Tribute to Space Pioneer Frederick I. Ordway III July 7th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE