Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Assist IBM in Cognitive Computer Chip Design

Stefano Carpin, UC Merced

A digitized UC Merced campus will be used as a virtual environment in which researchers will test IBM's new cognitive computer systems.
Stefano Carpin, UC Merced

A digitized UC Merced campus will be used as a virtual environment in which researchers will test IBM's new cognitive computer systems.

Abstract:
A team of researchers led by IBM, including a pair of professors from the University of California, Merced, unveiled today a new generation of experimental computer chips designed to emulate the brain's abilities for perception, action and cognition. The result could be processors that use much less power and far less space than those found in today's computers.

Researchers Assist IBM in Cognitive Computer Chip Design

Merced, CA | Posted on August 18th, 2011

UC Merced professors Chris Kello and Stefano Carpin have been and will continue heading up one aspect of the project — designing and implementing virtual environments to test these revolutionary new systems. The building blocks of cognitive computers, these cores are expected to learn through experiences, find correlations, create hypotheses and remember and learn from the outcomes, mimicking the brain's structural and synaptic plasticity.

The goal of the project is to create a system that not only analyzes complex information from multiple sensory inputs at once, but also automatically rewires itself as it interacts with its environment — all while approaching the remarkable power and size efficiency of the human brain. To get there will require research that incorporates principles from nanoscience, neuroscience, computer science and cognitive science.

"This project represents interdisciplinary research at its finest," said Kello, a cognitive scientist in UC Merced's School of Social Sciences, Humanities and Arts. "For decades, scientists and engineers have worked on theories of cognition and intelligent algorithms without taking seriously the basic fact that human intelligence is supported by brains that weigh about 3 pounds and consume about 20 watts of power. By contrast, today's supercomputers weigh tons and consume megawatts of power."

UC Merced recently received a grant for Phase 2 of the project — known as Systems of Neuromorphic Adaptive Plastic Scalable Electronics, or SyNAPSE — as part of $21 million in new funding from the Defense Advanced Research Projects Agency (DARPA) to the IBM team. Phases 0 and 1 have been successfully completed, and the first two prototype chips have already been fabricated and are undergoing testing.

Dharmendra Modha, project leader for IBM Research, said future applications of the technology could include traffic lights that can integrate sights, sounds and smells and flag unsafe intersections before disaster happens, or cognitive co-processors that would allow servers, laptops, tablets and phones to better interact with their environments.

The UC Merced work involves creating virtual environments in which to test this technology without the costs or complications of testing them in the real world.

"We are developing a high-fidelity simulation environment to test this new technology," said Carpin, a computer scientist in the School of Engineering. "This effort builds upon our numerous years of experience in this area, and we are proud that UC Merced is playing an important role in this project."

####

About University of California, Merced
UC Merced opened Sept. 5, 2005, as the 10th campus in the University of California system and the first American research university of the 21st century. The campus significantly expands access to the UC system for students throughout the state, with a special mission to increase college-going rates among students in the San Joaquin Valley. It also serves as a major base of advanced research and as a stimulus to economic growth and diversification throughout the region. Situated near Yosemite National Park, the university is expected to grow rapidly, topping out at about 25,000 students within 30 years.

For more information, please click here

Contacts:
James Leonard
UC Merced Office of Communications
Office: 209-228-4406
Cell: 209-681-1061

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Brain-Computer Interfaces

A firefly's flash inspires new nanolaser light July 18th, 2017

Gold & Graphene Make Brain Probes More Sensitive Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/05/tech/graphene-gold-brain-probe/ May 3rd, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Leti demonstrates world’s first alpha-wave measuring system for consumers at CES Unveiled and at its booth: RELAX Headgear Provides New Dimension to Wellness Management In Every Area of Life, From Working to Studying to Exercising or Just Sitting December 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Chip Technology

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Military

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Research partnerships

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project