Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Assist IBM in Cognitive Computer Chip Design

Stefano Carpin, UC Merced

A digitized UC Merced campus will be used as a virtual environment in which researchers will test IBM's new cognitive computer systems.
Stefano Carpin, UC Merced

A digitized UC Merced campus will be used as a virtual environment in which researchers will test IBM's new cognitive computer systems.

Abstract:
A team of researchers led by IBM, including a pair of professors from the University of California, Merced, unveiled today a new generation of experimental computer chips designed to emulate the brain's abilities for perception, action and cognition. The result could be processors that use much less power and far less space than those found in today's computers.

Researchers Assist IBM in Cognitive Computer Chip Design

Merced, CA | Posted on August 18th, 2011

UC Merced professors Chris Kello and Stefano Carpin have been and will continue heading up one aspect of the project — designing and implementing virtual environments to test these revolutionary new systems. The building blocks of cognitive computers, these cores are expected to learn through experiences, find correlations, create hypotheses and remember and learn from the outcomes, mimicking the brain's structural and synaptic plasticity.

The goal of the project is to create a system that not only analyzes complex information from multiple sensory inputs at once, but also automatically rewires itself as it interacts with its environment — all while approaching the remarkable power and size efficiency of the human brain. To get there will require research that incorporates principles from nanoscience, neuroscience, computer science and cognitive science.

"This project represents interdisciplinary research at its finest," said Kello, a cognitive scientist in UC Merced's School of Social Sciences, Humanities and Arts. "For decades, scientists and engineers have worked on theories of cognition and intelligent algorithms without taking seriously the basic fact that human intelligence is supported by brains that weigh about 3 pounds and consume about 20 watts of power. By contrast, today's supercomputers weigh tons and consume megawatts of power."

UC Merced recently received a grant for Phase 2 of the project — known as Systems of Neuromorphic Adaptive Plastic Scalable Electronics, or SyNAPSE — as part of $21 million in new funding from the Defense Advanced Research Projects Agency (DARPA) to the IBM team. Phases 0 and 1 have been successfully completed, and the first two prototype chips have already been fabricated and are undergoing testing.

Dharmendra Modha, project leader for IBM Research, said future applications of the technology could include traffic lights that can integrate sights, sounds and smells and flag unsafe intersections before disaster happens, or cognitive co-processors that would allow servers, laptops, tablets and phones to better interact with their environments.

The UC Merced work involves creating virtual environments in which to test this technology without the costs or complications of testing them in the real world.

"We are developing a high-fidelity simulation environment to test this new technology," said Carpin, a computer scientist in the School of Engineering. "This effort builds upon our numerous years of experience in this area, and we are proud that UC Merced is playing an important role in this project."

####

About University of California, Merced
UC Merced opened Sept. 5, 2005, as the 10th campus in the University of California system and the first American research university of the 21st century. The campus significantly expands access to the UC system for students throughout the state, with a special mission to increase college-going rates among students in the San Joaquin Valley. It also serves as a major base of advanced research and as a stimulus to economic growth and diversification throughout the region. Situated near Yosemite National Park, the university is expected to grow rapidly, topping out at about 25,000 students within 30 years.

For more information, please click here

Contacts:
James Leonard
UC Merced Office of Communications
Office: 209-228-4406
Cell: 209-681-1061

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Brain-Computer Interfaces

Nano memory cell can mimic the brain’s long-term memory May 14th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

On the frontiers of cyborg science August 10th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Military

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project