Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Uncovers Reliability Issues for Carbon Nanotubes in Future Electronics

Micrograph of recession and clumping in gold electrodes after NIST researchers applied 1.7 volts of electricity to the carbon nanotube wiring for an hour. The NIST reliability tests may help determine whether nanotubes can replace copper wiring in next-generation electronics.
Credit: M. Strus/NIST
Micrograph of recession and clumping in gold electrodes after NIST researchers applied 1.7 volts of electricity to the carbon nanotube wiring for an hour. The NIST reliability tests may help determine whether nanotubes can replace copper wiring in next-generation electronics.

Credit: M. Strus/NIST

Abstract:
Carbon nanotubes offer big promise in a small package. For instance, these tiny cylinders of carbon molecules theoretically can carry 1,000 times more electric current than a metal conductor of the same size. It's easy to imagine carbon nanotubes replacing copper wiring in future nanoscale electronics.

NIST Uncovers Reliability Issues for Carbon Nanotubes in Future Electronics

Boulder, CO | Posted on August 17th, 2011

But—not so fast. Recent tests at the National Institute of Standards and Technology (NIST) suggest device reliability is a major issue.

Copper wires transport power and other signals among all the parts of integrated circuits; even one failed conductor can cause chip failure. As a rough comparison, NIST researchers fabricated and tested numerous nanotube interconnects between metal electrodes. NIST test results, described at a conference this week,* show that nanotubes can sustain extremely high current densities (tens to hundreds of times larger than that in a typical semiconductor circuit) for several hours but slowly degrade under constant current. Of greater concern, the metal electrodes fail—the edges recede and clump—when currents rise above a certain threshold. The circuits failed in about 40 hours.

While many researchers around the world are studying nanotube fabrication and properties, the NIST work offers an early look at how these materials may behave in real electronic devices over the long term. To support industrial applications of these novel materials, NIST is developing measurement and test techniques and studying a variety of nanotube structures, zeroing in on what happens at the intersections of nanotubes and metals and between different nanotubes. "The common link is that we really need to study the interfaces," says Mark Strus, a NIST postdoctoral researcher.

In another, related study published recently,** NIST researchers identified failures in carbon nanotube networks—materials in which electrons physically hop from tube to tube. Failures in this case seemed to occur between nanotubes, the point of highest resistance, Strus says. By monitoring the starting resistance and initial stages of material degradation, researchers could predict whether resistance would degrade gradually—allowing operational limits to be set—or in a sporadic, unpredictable way that would undermine device performance. NIST developed electrical stress tests that link initial resistance to degradation rate, predictability of failure and total device lifetime. The test can be used to screen for proper fabrication and reliability of nanotube networks.

Despite the reliability concerns, Strus imagines that carbon nanotube networks may ultimately be very useful for some electronic applications. "For instance, carbon nanotube networks may not be the replacement for copper in logic or memory devices, but they may turn out to be interconnects for flexible electronic displays or photovoltaics," Strus says.

Overall, the NIST research will help qualify nanotube materials for next-generation electronics, and help process developers determine how well a structure may tolerate high electric current and adjust processing accordingly to optimize both performance and reliability.

* M.C. Strus, R.R. Keller and N. Barbosa III. Electrical reliability and breakdown mechanisms in single-walled carbon nanotubes. Paper presented at IEEE Nano 2011, Portland, Ore., Aug. 17, 2011.

** M.C. Strus, A.N. Chiaramonti, Y.L. Kim, Y.J. Jung and R.R. Keller. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to dc electrical stressing. Nanotechnology 22 pp. 265713 (2011).

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Flexible Electronics

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

New conductive coatings for flexible touchscreens – presentation at nano tech 2015 in Japan January 22nd, 2015

Laboratories

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

NREL Scientist Brian Gregg Named AAAS Fellow: Gregg honored for distinguished contributions to the field of organic solar photoconversion January 20th, 2015

Self-destructive Effects of Magnetically-doped Ferromagnetic Topological Insulators: Magnetic atoms that create exotic surface property also sow the seeds of its destruction January 19th, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Chip Technology

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Memory Technology

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Nanotubes/Buckyballs

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Carbon Nanotubes Increase Efficiency of Solar Cells January 12th, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Energy

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Solar/Photovoltaic

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

The path to artificial photosynthesis: HZB researchers describe efficient manganese catalyst capable of converting light to chemical energy January 21st, 2015

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE