Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NIST Uncovers Reliability Issues for Carbon Nanotubes in Future Electronics

Micrograph of recession and clumping in gold electrodes after NIST researchers applied 1.7 volts of electricity to the carbon nanotube wiring for an hour. The NIST reliability tests may help determine whether nanotubes can replace copper wiring in next-generation electronics.
Credit: M. Strus/NIST
Micrograph of recession and clumping in gold electrodes after NIST researchers applied 1.7 volts of electricity to the carbon nanotube wiring for an hour. The NIST reliability tests may help determine whether nanotubes can replace copper wiring in next-generation electronics.

Credit: M. Strus/NIST

Abstract:
Carbon nanotubes offer big promise in a small package. For instance, these tiny cylinders of carbon molecules theoretically can carry 1,000 times more electric current than a metal conductor of the same size. It's easy to imagine carbon nanotubes replacing copper wiring in future nanoscale electronics.

NIST Uncovers Reliability Issues for Carbon Nanotubes in Future Electronics

Boulder, CO | Posted on August 17th, 2011

But—not so fast. Recent tests at the National Institute of Standards and Technology (NIST) suggest device reliability is a major issue.

Copper wires transport power and other signals among all the parts of integrated circuits; even one failed conductor can cause chip failure. As a rough comparison, NIST researchers fabricated and tested numerous nanotube interconnects between metal electrodes. NIST test results, described at a conference this week,* show that nanotubes can sustain extremely high current densities (tens to hundreds of times larger than that in a typical semiconductor circuit) for several hours but slowly degrade under constant current. Of greater concern, the metal electrodes fail—the edges recede and clump—when currents rise above a certain threshold. The circuits failed in about 40 hours.

While many researchers around the world are studying nanotube fabrication and properties, the NIST work offers an early look at how these materials may behave in real electronic devices over the long term. To support industrial applications of these novel materials, NIST is developing measurement and test techniques and studying a variety of nanotube structures, zeroing in on what happens at the intersections of nanotubes and metals and between different nanotubes. "The common link is that we really need to study the interfaces," says Mark Strus, a NIST postdoctoral researcher.

In another, related study published recently,** NIST researchers identified failures in carbon nanotube networks—materials in which electrons physically hop from tube to tube. Failures in this case seemed to occur between nanotubes, the point of highest resistance, Strus says. By monitoring the starting resistance and initial stages of material degradation, researchers could predict whether resistance would degrade gradually—allowing operational limits to be set—or in a sporadic, unpredictable way that would undermine device performance. NIST developed electrical stress tests that link initial resistance to degradation rate, predictability of failure and total device lifetime. The test can be used to screen for proper fabrication and reliability of nanotube networks.

Despite the reliability concerns, Strus imagines that carbon nanotube networks may ultimately be very useful for some electronic applications. "For instance, carbon nanotube networks may not be the replacement for copper in logic or memory devices, but they may turn out to be interconnects for flexible electronic displays or photovoltaics," Strus says.

Overall, the NIST research will help qualify nanotube materials for next-generation electronics, and help process developers determine how well a structure may tolerate high electric current and adjust processing accordingly to optimize both performance and reliability.

* M.C. Strus, R.R. Keller and N. Barbosa III. Electrical reliability and breakdown mechanisms in single-walled carbon nanotubes. Paper presented at IEEE Nano 2011, Portland, Ore., Aug. 17, 2011.

** M.C. Strus, A.N. Chiaramonti, Y.L. Kim, Y.J. Jung and R.R. Keller. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to dc electrical stressing. Nanotechnology 22 pp. 265713 (2011).

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Flexible Electronics

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

Laboratories

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

World's smallest reference material is big plus for nanotechnology September 25th, 2014

Govt.-Legislation/Regulation/Funding/Policy

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Chip Technology

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Memory Technology

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

Nanotubes/Buckyballs

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Announcements

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Energy

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Solar/Photovoltaic

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Quick Method Found for Synthesis of Organic Compounds with Less Pollution September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE