Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST Uncovers Reliability Issues for Carbon Nanotubes in Future Electronics

Micrograph of recession and clumping in gold electrodes after NIST researchers applied 1.7 volts of electricity to the carbon nanotube wiring for an hour. The NIST reliability tests may help determine whether nanotubes can replace copper wiring in next-generation electronics.
Credit: M. Strus/NIST
Micrograph of recession and clumping in gold electrodes after NIST researchers applied 1.7 volts of electricity to the carbon nanotube wiring for an hour. The NIST reliability tests may help determine whether nanotubes can replace copper wiring in next-generation electronics.

Credit: M. Strus/NIST

Abstract:
Carbon nanotubes offer big promise in a small package. For instance, these tiny cylinders of carbon molecules theoretically can carry 1,000 times more electric current than a metal conductor of the same size. It's easy to imagine carbon nanotubes replacing copper wiring in future nanoscale electronics.

NIST Uncovers Reliability Issues for Carbon Nanotubes in Future Electronics

Boulder, CO | Posted on August 17th, 2011

But—not so fast. Recent tests at the National Institute of Standards and Technology (NIST) suggest device reliability is a major issue.

Copper wires transport power and other signals among all the parts of integrated circuits; even one failed conductor can cause chip failure. As a rough comparison, NIST researchers fabricated and tested numerous nanotube interconnects between metal electrodes. NIST test results, described at a conference this week,* show that nanotubes can sustain extremely high current densities (tens to hundreds of times larger than that in a typical semiconductor circuit) for several hours but slowly degrade under constant current. Of greater concern, the metal electrodes fail—the edges recede and clump—when currents rise above a certain threshold. The circuits failed in about 40 hours.

While many researchers around the world are studying nanotube fabrication and properties, the NIST work offers an early look at how these materials may behave in real electronic devices over the long term. To support industrial applications of these novel materials, NIST is developing measurement and test techniques and studying a variety of nanotube structures, zeroing in on what happens at the intersections of nanotubes and metals and between different nanotubes. "The common link is that we really need to study the interfaces," says Mark Strus, a NIST postdoctoral researcher.

In another, related study published recently,** NIST researchers identified failures in carbon nanotube networks—materials in which electrons physically hop from tube to tube. Failures in this case seemed to occur between nanotubes, the point of highest resistance, Strus says. By monitoring the starting resistance and initial stages of material degradation, researchers could predict whether resistance would degrade gradually—allowing operational limits to be set—or in a sporadic, unpredictable way that would undermine device performance. NIST developed electrical stress tests that link initial resistance to degradation rate, predictability of failure and total device lifetime. The test can be used to screen for proper fabrication and reliability of nanotube networks.

Despite the reliability concerns, Strus imagines that carbon nanotube networks may ultimately be very useful for some electronic applications. "For instance, carbon nanotube networks may not be the replacement for copper in logic or memory devices, but they may turn out to be interconnects for flexible electronic displays or photovoltaics," Strus says.

Overall, the NIST research will help qualify nanotube materials for next-generation electronics, and help process developers determine how well a structure may tolerate high electric current and adjust processing accordingly to optimize both performance and reliability.

* M.C. Strus, R.R. Keller and N. Barbosa III. Electrical reliability and breakdown mechanisms in single-walled carbon nanotubes. Paper presented at IEEE Nano 2011, Portland, Ore., Aug. 17, 2011.

** M.C. Strus, A.N. Chiaramonti, Y.L. Kim, Y.J. Jung and R.R. Keller. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to dc electrical stressing. Nanotechnology 22 pp. 265713 (2011).

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Laboratories

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Flexible Electronics

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project