Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ions Control Shape Of Nanofibers Grown On Clear Substrate

The nanofibers lean in different directions depending on where they are located in relation to the chromium grid, because the ions are being drawn to the grid and strike the catalysts at various angles.
The nanofibers lean in different directions depending on where they are located in relation to the chromium grid, because the ions are being drawn to the grid and strike the catalysts at various angles.

Abstract:
"Role of ion flux on alignment of carbon nanofibers synthesized by DC plasma on transparent insulating substrates"

Authors: Ryan C. Pearce, Anatoli V. Melechko, North Carolina State University; Alexei V. Vasenkov, CFDRC; Dale K. Hensley, Michael L. Simpson, Timothy E. McKnight, Oak Ridge National Laboratory

Published: Forthcoming from the ACS journal Applied Materials & Interfaces

Abstract: A key factor to the implementation of devices with vertically aligned carbon nanofibers (VACNFs) is fundamental understanding of how to control fluctuations in the growth direction of the fibers. Here we demonstrate synthesis of VACNF on transparent and insulating substrates by continuous direct current plasma for realization of cellular interface suitable for transmission optical microscopy. To maintain continuous glow discharge above the substrate, a metal grid electrode layer was deposited over silica with windows of exposed silica ranging in size from 200?m to 1mm. This electrode geometry allows for synthesis of VACNFs even within an insulating window. This observation and the observed trends in the alignment of nanofibers in the vicinity of grid electrodes have indicated that the alignment does not correspond to the direction of the electric field at the substrate level, contrary to previously proposed alignment mechanism. Computational modeling of the plasma with this grid cathode geometry has shown that nanofiber alignment trends follow calculated ion flux direction rather than electrical field. The new proposed alignment mechanism is that ion sputtering of the carbon film on a catalyst particle defines the growth direction of the nanofibers. With this development, fiber growth direction can be better manipulated through changes in ionic flux direction, opening the possibility for growth of nanofibers on substrates with unique geometries.

Ions Control Shape Of Nanofibers Grown On Clear Substrate

Raleigh, NC | Posted on August 16th, 2011

Researchers from North Carolina State University, the Oak Ridge National Laboratory and CFD Research Corporation have found a new way to develop straight carbon nanofibers on a transparent substrate. Growing such nanofiber coatings is important for use in novel biomedical research tools, solar cells, water repellent coatings and others. The technique utilizes a charged chromium grid, and relies on ions to ensure the nanofibers are straight, rather than curling - which limits their utility.

"This is the first time, that I know of, where someone has been able to grow straight carbon nanofibers on a clear substrate," says Dr. Anatoli Melechko, an associate professor of materials science and engineering at NC State and co-author of a paper describing the research. "Such nanofibers can be used as gene-delivery tools. And a transparent substrate allows researchers to see how the nanofibers interact with cells, and to manipulate this interaction."

Specifically, the nanofibers can be coated with genetic material and then inserted into the nucleus of a cell - for example, to facilitate gene therapy research. The transparent substrate improves visibility because researchers can shine light through it, creating better contrast and making it easier to see what's going on.

The researchers also learned that ions play a key role in ensuring that the carbon nanofibers are straight. To understand that role, you need to know how the technique works.

The nanofibers are made by distributing nickel nanoparticles evenly on a substrate made of fused silicon (which is pure silicon dioxide). The substrate is then overlaid with a fine grid made of chromium, which serves as an electrode. The substrate and grid are then placed in a chamber at 700 degrees Celsius, which is then filled with acetylene and ammonia gas. The chrome grid is a negatively charged electrode, and the top of the chamber contains a positively charged electrode.

Electric voltage is then applied to the two electrodes, creating an electric field in the chamber that excites the atoms in the acetylene and ammonia gas. Some of the electrons in these atoms break away, creating free electrons and positively charged atoms called ions. The free electrons accelerate around the chamber, knocking loose even more electrons. The positively charged ions are drawn to the negatively charged grid on the floor of the chamber.

Meanwhile, the nickel nanoparticles are serving as catalysts, reacting with the carbon in the acetylene gas (C2H2) to create graphitic carbon nanofibers. The catalyst rides on the tip of the nanofiber that forms beneath it, like a rapidly growing pillar. The term graphitic means that the nanofibers have carbon atoms arranged in a hexagonal structure - like graphite.

One problem with growing carbon nanofibers is that the surface of the catalyst can become obstructed by a carbon film that blocks catalytic action, preventing further nanofibers growth. Here's where those ions come in.

The ions being drawn to the chromium grid are moving very quickly, and they choose the shortest possible route to reach the negatively-charged metal. In their rush to reach the grid, the ions often collide with the nickel catalysts, knocking off the excess carbon - and allowing further nanofibers growth. Video of the process is available here.

Because the ions are being drawn to the chromium grid, the angle at which they strike the catalysts depends on where the catalyst is located relative to the grid. For example, if you are looking down at the grid, a catalyst just to the right of the grid will appear to be leaning right - because ions would have been striking the right side of the catalyst in an attempt to reach the grid. These nanofibers are still straight - they don't curl up - they simply lean in one direction. The bulk of the nanofibers, however, are both straight and vertically aligned.

"This finding gives us an opportunity to create new reactors for creating nanofibers, building in the chromium grid," Melechko says.

The paper, "Role of ion flux on alignment of carbon nanofibers synthesized by DC plasma on transparent insulating substrates," is forthcoming from the ACS journal Applied Materials & Interfaces. The paper was co-authored by Ryan Pearce, a Ph.D. student at NC State; Dr. Alexei Vasenkov of CFDRC; and Dale Hensley, Dr. Michael Simpson and Timothy McKnight of Oak Ridge National Laboratory. The research was supported by Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy (processing, analytical microscopy, and experimental design). The device fabrication for cell interfacing was done through a user project at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, and sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

NC State's Department of Materials Science and Engineering is part of the university's College of Engineering.

-shipman-

####

For more information, please click here

Contacts:
Matt Shipman | News Services | 919.515.6386


Dr. Anatoli Melechko
919.515.8636

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Laboratories

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Atomic force microscope reveals molecular ghosts: Mapping molecules with atomic precision expands toolbox for designing new catalytic reactions May 11th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Nanomedicine

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Discoveries

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Materials/Metamaterials

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Announcements

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Energy

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Distance wireless charging enhanced by magnetic metamaterials: A metamaterial shell is capable of multiplying transmission efficiency several times over May 13th, 2016

Research partnerships

Mille-feuille-filter removes viruses from water May 19th, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Physicists measure van der Waals forces of individual atoms for the first time May 14th, 2016

Solar/Photovoltaic

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic