Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne-pioneered X-ray lens to aid nanomaterials research

A team of researchers at Argonne has developed the new "multilayer Laue lens," that will let scientists study the nanoscale in greater detail than ever before. From left to right: Bing Shi, Lahsen Assoufid, Brian Stephenson, Jörg Maser, Chian Liu, Lisa Gades.
A team of researchers at Argonne has developed the new "multilayer Laue lens," that will let scientists study the nanoscale in greater detail than ever before. From left to right: Bing Shi, Lahsen Assoufid, Brian Stephenson, Jörg Maser, Chian Liu, Lisa Gades.

Abstract:
More affordable and efficient solar cells, batteries and lighting systems could result from a new X-ray lens that will let scientists study the nanoscale in greater detail than ever before.

Argonne-pioneered X-ray lens to aid nanomaterials research

Argonne, IL | Posted on August 15th, 2011

A team of researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory has developed the new "multilayer Laue lens". This lens focuses high-energy X-rays so tightly they can detect objects as small as 15 nanometers in size and is in principle capable of focusing to well below 10 nanometers. This approach doubles the resolution over existing lenses, and future advancements could increase resolution by 10 times.

Understanding, imaging and manipulating the physical world at the nanoscale is critical to designing materials, devices and technologies that impact our daily lives. To aid in this effort, Argonne's Advanced Photon Source (APS) and Center for Nanoscale Materials (CNM) partnered to improve lens capabilities.

"There's a big need to look into the nanoscale world," said Lahsen Assoufid, Optics Group Leader at the APS. "Availability of this new type of X-ray lens will definitely open new windows into to nanoscale science. "

If you want to look at a material closely—really closely—hard X-rays like those produced at  the APS are the answer. The APS provides some of the nation's brightest beams of X-rays for research; more than 3,500 scientists from industry, academia and national laboratories conducted experiments there last year. These extremely intense and focused X-rays allow scientists to peer into the depths of the nanoworld by focusing the photons on a single small area.

"With this lens, you will be able to see individual nanoparticles," said Argonne physicist Jörg Maser, who conducts research at the APS and CNM." Coupled with the X-rays at the APS, you can detect concentrations of as few as tens of atoms in a complex environment."

The team designed the new lens to improve the focusing of hard X-rays. The lens is crafted by depositing thousands of alternating layers of silicon and tungsten silicide one by one, which are then polished down to just 10 microns thin.

"One of the major 21st century challenges we face is energy," Maser said. "For example, solar energy is not yet cost-effective on a dollar-per-kilowatt-hour level. In order to drive the price down to $1 per kilowatt, we need solar cells that are more efficient and made from less expensive materials. To get there, we need a better understanding of the defects that occur while solar cells are manufactured."

By watching solar cells as they are manufactured and identifying where the defects occur, scientists hope to improve the quality of manufactured cells.

The Argonne team began work on the lens in 2003, working out the complex calculations to predict how—and whether—it would work. Then they needed to demonstrate the idea, perfect a prototype and test the lens. A set of the lenses is now in use at the APS and the CNM, and more are being fabricated. Brookhaven National Laboratory's X-ray synchrotron has begun a strong research effort in fabricating advanced multilayer Laue lenses, Maser said, and groups in Japan and Europe have begun to develop similar systems.

In the near future, the team is expecting to incorporate the new lenses into microelectromechanical systems, or MEMS: mechanical structures with micrometer-size movable parts. MEMS can be used to precisely position and control these new lenses. Particularly attractive is the possibility of automatically focusing the lenses during experiments, and the ability to scan the X-rays very quickly across samples. This research takes place collaboratively between the APS and Argonne's Center for Nanoscale Materials.

This research was supported by the DOE's Office of Basic Energy Sciences. A recent paper on the lens, "Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses", was published in Optics Express. The team's deposition approach earned them an R&D100 award in 2005.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the DOE Office of Science to carry out applied and basic research in order to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

By Louise Lerner

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Louise Lerner
630/252-5526

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Two dimensional hard x-ray nanofocusing with crossed multilayer Laue lenses."

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Laboratories

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Imaging

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Tools

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Energy

Nanoparticle technology triples the production of biogas October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Solar/Photovoltaic

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE