Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stick-On Tattoos Go Electric: Micro-electronics, elegant design and existing tattoo tech combine to create a complex device that is far more than a novelty

The newly developed device, an epidermal electronic system created by an international team of engineers and scientists.

Credit: J. Rogers, University of Illinois
The newly developed device, an epidermal electronic system created by an international team of engineers and scientists.

Credit: J. Rogers, University of Illinois

Abstract:
Through a combination of careful theoretical modeling and precise micro-manufacturing, a team of engineers and scientists has developed a new type of ultra-thin, self-adhesive electronics device that can effectively measure data about the human heart, brain waves and muscle activity--all without the use of bulky equipment, conductive fluids or glues.



One of the advantages of the newly created epidermal electronic systems is easy on / easy off application. As this video shows, the electronics have the right physical propertie--such as stiffness, bending rigidity, thickness and mass density--to perfectly match to the epidermis. The systems seamlessly integrate and conform to the surface of the skin in a way that is mechanically invisible to the user, and the devices have the potential to provide a range of healthcare and non-healthcare related functions.

Credit: J. Rogers, University of Illinois

Stick-On Tattoos Go Electric: Micro-electronics, elegant design and existing tattoo tech combine to create a complex device that is far more than a novelty

Arlington, VA | Posted on August 13th, 2011

The researchers have created a new class of micro-electronics with a technology that they call an epidermal electronic system (EES). They have incorporated miniature sensors, light-emitting diodes, tiny transmitters and receivers and networks of carefully crafted wire filaments into their initial designs.

The technology is presented--along with initial measurements that researchers captured using the EES--in a paper by lead author Dae-Hyeong Kim of the University of Illinois and colleagues in the Aug. 12, 2011, issue of Science.

The EES device was developed by collaborators from the University of Illinois at Urbana-Champaign, Northwestern University, Tufts University, the Institute of High Performance Computing in Singapore, and Dalian University of Technology in China.

"Our goal was to develop an electronic technology that could integrate with the skin in a way that is mechanically and physiologically invisible to the user," says corresponding author John Rogers, a professor in materials science and engineering department at the University of Illinois at Urbana-Champaign. "We found a solution that involves devices we designed to achieve physical properties that match to the epidermis itself. It's a technology that blurs the distinction between electronics and biology."

While existing technologies accurately measure heart rate, brain waves and muscle activity, EES devices offer the opportunity to seamlessly apply sensors that have almost no weight, no external wires and require negligible power.

Because of the small power requirements, the devices can draw power from stray (or transmitted) electromagnetic radiation through the process of induction and can harvest a portion of their energy requirements from miniature solar collectors.

The EES designs yield flat devices that are less than 50-microns thick--thinner than the diameter of a human hair--which are integrated onto the polyester backing familiar from stick-on tattoos.

The devices are so thin that close-contact forces called van der Waals interactions dominate the adhesion at the molecular level, so the electronic tattoos adhere to the skin without any glues and stay in place for hours.

The recent study demonstrated device lifetimes of up to 24 hours under ideal conditions.

"The mechanics behind the design for our serpentine-shaped electronics makes the device as soft as the human skin," says Northwestern University engineer Yonggang Huang, also a lead researcher on the project. "The design enables brittle, inorganic semiconductors to achieve extremely vast stretchability and flexibility. Plus, the serpentine design is very useful for self adhesion to any surface without using glues."

While some areas of the body are ill-suited to adhesive electronics, such as the elbow, most regions commonly targeted for medical and experimental studies are ideal, including the forehead, extremities and the chest.

Regions of the body that previously proved difficult to fit with sensors may now be monitored, including the throat, which the researchers studied to observe muscle activity during speech.

The throat experiment yielded enough precision for the research team to differentiate words in vocabulary and even control a voice-activated video game interface with greater than 90 percent accuracy.

"This type of device might provide utility for those who suffer from certain diseases of the larynx," adds Rogers. "It could also form the basis of a sub-vocal communication capability, suitable for covert or other uses."

The current innovation builds upon six years of collaboration between Rogers and Huang, who had earlier partnered to develop flexible electronics for hemispherical camera sensors and other devices that conform to complex shapes.

"This work is really just beginning," adds Rogers. "On the technology side, our focus is on wireless communication and improved solutions for power-such as batteries, storage capacitors and mechanical energy harvesters-to complement the inductive and solar concepts that we demonstrate in the present paper."

The researchers are also exploring clinical approaches, particularly for ailments where sensor size is critical, such as sleep apnea and neonatal care.

Much further into the future, the researchers hope to incorporate microfluidic devices into their technology, opening up a new arena of electronic bandages and enhanced-functioning skin, potentially accelerating wound healing or treating burns and other skin conditions.

The research was supported by the National Science Foundation through the grants OISE-1043143, CMMI-0749028 and ECCS-0824129 and the United States Air Force, Department of Energy and Beckman Institute.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Joshua A. Chamot
NSF
(703) 292-7730


Kyle Delaney
Northwestern University
(847) 467-4010


Liz Ahlberg
University of Illinois at Urbana-Champaign
(217) 244-1073


Co-Investigators
Yonggang Huang
Northwestern University
(847) 467-3165


John Rogers
University of Illinois at Urbana-Champaign
(217) 244-4979


Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Display technology/LEDs/SS Lighting/OLEDs

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Flexible Electronics

A molecule like a nanobattery: Chemical scientists decipher complex electronic structure of a three-nuclear metallorganic compound with the capacity of donating and receiving multiple electrons June 9th, 2021

Threads that sense how and when you move? New technology makes it possible: Engineers created thread sensors that can be attached to skin to measure movement in real time, with potential implications for tracking health and performance January 29th, 2021

Going Organic: uOttawa team realizing the limitless possibilities of wearable electronics January 28th, 2021

Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021

Govt.-Legislation/Regulation/Funding/Policy

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Chip Technology

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Nanomedicine

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Sensors

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Engineers develop prototype of electronic nose September 3rd, 2021

Announcements

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone's Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretching the capacity of flexible energy storage September 10th, 2021

Polymer electrolytes for all-solid-state batteries without dead zones August 20th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project