Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Technique Scales Up Nanofiber Production

Abstract:
"Edge electrospinning for high throughput production of quality nanofibers"

Authors: N M Thoppey, J R Bochinski, L I Clarke and R E Gorga, North Carolina State University
Published: July 29, 2011, in Nanotechnology

A novel, simple geometry for high throughput electrospinning from a bowl edge is presented that utilizes a vessel filled with a polymer solution and a concentric cylindrical collector. Successful fiber formation is presented for two different polymer systems with differing solution viscosity and solvent volatility. The process of jet initiation, resultant fiber morphology and fiber production rate are discussed for this unconfined feed approach. Under high voltage initiation, the jets spontaneously form directly on the fluid surface and rearrange along the circumference of the bowl to provide approximately equal spacing between spinning sites. Nanofibers currently produced from bowl electrospinning are identical in quality to those fabricated by traditional needle electrospinning (TNE) with a demonstrated ~40 times increase in the production rate for a single batch of solution due primarily to the presence of many simultaneous jets. In the bowl electrospinning geometry, the electric field pattern and subsequent effective feed rate are very similar to those parameters found under optimized TNE experiments. Consequently, the electrospinning process per jet is directly analogous to that in TNE and thereby results in the same quality of nanofibers.

New Technique Scales Up Nanofiber Production

Raleigh, NC | Posted on August 10th, 2011

A new spin on an old technology will give scientists and manufacturers the ability to significantly increase their production of nanofibers, according to researchers at North Carolina State University.

Collections of nanofibers, because they are porous and lightweight, are useful in applications ranging from water filtration to tissue regeneration to energy storage. But although nanofibers are relatively inexpensive to produce, the current method of production - needle electrospinning - is time-intensive.

In electrospinning, a liquid-polymer solution is passed through a hypodermic needle held at high voltage. The needle transfers electric charge, which transforms the solution into a jet of charged liquid that "spins" into a nanofiber as it exits the needle. Unfortunately, this method of production does not lend itself to large-scale manufacturing processes.

NC State physicists Laura Clarke and Jason Bochinski, textile engineer Russell Gorga and graduate student Nagarajan Thoppey found a particularly simple technique that scales up nanofiber production and provides a close connection to the needle electrospinning method. In a study recently published in the journal Nanotechnology, they demonstrated "bowl electrospinning." In place of a hypodermic needle, the researchers filled a bowl with the polymer fluid and applied a short burst of very high voltage to the liquid's surface, which caused multiple jets to form and "spin" nanofibers onto a collector placed around the outside of the bowl.

According to Bochinski, the experiment gave them a 40-fold increase in nanofiber production, and demonstrated the potential for further increases. It also led to one question that they hope to answer in the near future:

"One of our next steps will be studying the limitations of the bowl apparatus we used - for instance, why was the increase only 40-fold and not 40,000-fold - and how that relates to the geometry of the arrangement and the fluid's properties," Bochinski says.

The work was funded by the National Science Foundation and NC State's Faculty Research and Professional Development Fund. The Department of Physics is part of NC State's College of Physical and Mathematical Sciences. The Department of Textile Engineering, Chemistry and Science is part of NC State's College of Textiles.

####

For more information, please click here

Contacts:
Tracey Peake
News Services
919.515.6142

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project