Home > Press > Teaming Up to Build 3-D Nanomaterials
Abstract:
A national team of experts, led by a Case Western Reserve University researcher, has received a multi-million-dollar grant to bring unrivaled qualities found in one- and two-dimensional nanomaterials into three dimensions.
The scientists' goal is to produce new materials for a host of uses, ranging from high-efficiency batteries, ultracapacitors, fuel cells and hydrogen storage devices to lightweight thermal coatings for hypersonic jets, multifunctional materials for aerospace, and more.
The team, from five universities, two government research institutes and a private company, has been awarded a Department of Defense Multidisciplinary University Research Initiative grant totaling more than $7 million over five years.
The grant comes through the Air Force Office of Scientific Research. There, Joycelyn Harrison is the program manager, Ajit Roy from the Air Force Research Laboratory leads the technical advisory board.
Recent theoretical studies and computer modeling, carried out by Roy and co-workers at Wright-Patterson Air Force Base and others elsewhere, have predicted great promise for three-dimensional (3D) pillared carbon nanomaterials, but so far, no one has been able to make them with controlled and repeatable junction properties of this 3-D nanomaterials, said Liming Dai, the Kent Hale Smith professor of macromolecular science and engineering at Case Western Reserve. Dai is also director of the Center of Advanced Science and Engineering for Carbon (CASE4Carbon), and principal investigator on the grant.
"This requires a multi-university effort," he said
Dai's Center in the Department of Macromolecular Science and Engineering, The Great Lake Energy Institute, and The Institute of Advanced Materials, Case School of Engineering, at Case Western Reserve will develop technology needed to build carbon nanotubes and graphene sheets into nanoporous frameworks that would produce strong electrical and thermal conductivity and other properties in three dimensions.
His team plans to build 3D networks of alternating layers of carbon nanotubes, which are single rolled molecules that conduct strongly but only in one direction, and graphene, which is a one-atom-thick sheet of carbon and highly conductive in two directions along the plane of the sheet.
Timothy Fisher and Xiulin Ruan, professors of mechanical engineering at Purdue University, conduct experimental studies and develop predictive models of thermal-conductive nanomaterials, will focus on methods of creating and characterizing a nanoporous materials.
Nanoporous materials made of boron-carbon-nitrogen nanotubes and/or nanosheets are far less orderly than the frameworks above and would perform better at high temperatures - such as on the leading wing edge of a jet flying better than five times the speed of sound - and in such applications as thermal dissipation, mechanical and sound damping.
"Both kinds of structures are porous - the density is very low - which is good for aerospace applications," Dai said. "They have huge surface area compared to volume, which is good for energy storage."
Zhenhai Xia, a professor of materials science and engineering at North Texas University, will guide development through extensive multi-scale computer modeling.
Also from Case Western Reserve, Chung-Chiun Liu, the Wallace R. Persons professor of chemical engineering, will characterize the electrochemical properties of the materials and Vikas Prakash, a professor of mechanical and aerospace engineering, will characterize mechanical properties and thermal and electrical transport in these nanostructures. He will also explore the use of mechanical strain in tuning electrical and thermal transport in these materials.
Once the basic materials are made, others will hybridize them for custom uses.
Zhong Lin Wang, the Hightower Chair and Regents' professor of materials science and engineering at Georgia Institute of Technology and pioneer in piezoelectronics and nanogenerators, will integrate zinc oxide components to produce and characterize structure and property changes triggered by exposure to certain wavelengths of light, mechanical or other stimuli.
Quan Li, Director of Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute and an adjunct professor in the Chemical Physics Interdisciplinary Program at Kent State University, will tap his lab's expertise in liquid crystals to develop multi-functional capabilities.
Researchers from Wright Patterson Air Force Base, Pacific Northwest National Laboratory and GrafTech Inc., a private company in Cleveland, will also contribute to the effort.
####
For more information, please click here
Contacts:
Kevin Mayhood
Sr. News and Information Specialist
Case Western Reserve University
216-368-4442
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018
New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018
Observing biological nanotransporters: Chemistry April 19th, 2018
Govt.-Legislation/Regulation/Funding/Policy
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018
Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018
Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018
Announcements
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018
New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018
Observing biological nanotransporters: Chemistry April 19th, 2018
Military
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018
New 4-D printer could reshape the world we live in March 20th, 2018
Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant March 16th, 2018
Energy
Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018
Psst! A whispering gallery for light boosts solar cells April 14th, 2018
Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018
Aerospace/Space
Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018
How do very small particles behave at very high temperatures? April 6th, 2018
Deep Space Industries to provide Comet satellite propulsion for BlackSky, LeoStella April 3rd, 2018
Piezomagnetic material changes magnetic properties when stretched March 22nd, 2018
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Ultra-powerful batteries made safer, more efficient: Team aims to curb formation of harmful crystal-like masses in lithium metal batteries April 12th, 2018
A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018
Graphene oxide nanosheets could help bring lithium-metal batteries to market March 23rd, 2018
Fuel Cells
A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018
Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018
Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018
Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017
Research partnerships
New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018
Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018
Psst! A whispering gallery for light boosts solar cells April 14th, 2018
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |