Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Teaming Up to Build 3-D Nanomaterials

Abstract:
A national team of experts, led by a Case Western Reserve University researcher, has received a multi-million-dollar grant to bring unrivaled qualities found in one- and two-dimensional nanomaterials into three dimensions.

Teaming Up to Build 3-D Nanomaterials

Cleveland, OH | Posted on August 10th, 2011

The scientists' goal is to produce new materials for a host of uses, ranging from high-efficiency batteries, ultracapacitors, fuel cells and hydrogen storage devices to lightweight thermal coatings for hypersonic jets, multifunctional materials for aerospace, and more.

The team, from five universities, two government research institutes and a private company, has been awarded a Department of Defense Multidisciplinary University Research Initiative grant totaling more than $7 million over five years.

The grant comes through the Air Force Office of Scientific Research. There, Joycelyn Harrison is the program manager, Ajit Roy from the Air Force Research Laboratory leads the technical advisory board.

Recent theoretical studies and computer modeling, carried out by Roy and co-workers at Wright-Patterson Air Force Base and others elsewhere, have predicted great promise for three-dimensional (3D) pillared carbon nanomaterials, but so far, no one has been able to make them with controlled and repeatable junction properties of this 3-D nanomaterials, said Liming Dai, the Kent Hale Smith professor of macromolecular science and engineering at Case Western Reserve. Dai is also director of the Center of Advanced Science and Engineering for Carbon (CASE4Carbon), and principal investigator on the grant.

"This requires a multi-university effort," he said

Dai's Center in the Department of Macromolecular Science and Engineering, The Great Lake Energy Institute, and The Institute of Advanced Materials, Case School of Engineering, at Case Western Reserve will develop technology needed to build carbon nanotubes and graphene sheets into nanoporous frameworks that would produce strong electrical and thermal conductivity and other properties in three dimensions.

His team plans to build 3D networks of alternating layers of carbon nanotubes, which are single rolled molecules that conduct strongly but only in one direction, and graphene, which is a one-atom-thick sheet of carbon and highly conductive in two directions along the plane of the sheet.

Timothy Fisher and Xiulin Ruan, professors of mechanical engineering at Purdue University, conduct experimental studies and develop predictive models of thermal-conductive nanomaterials, will focus on methods of creating and characterizing a nanoporous materials.

Nanoporous materials made of boron-carbon-nitrogen nanotubes and/or nanosheets are far less orderly than the frameworks above and would perform better at high temperatures - such as on the leading wing edge of a jet flying better than five times the speed of sound - and in such applications as thermal dissipation, mechanical and sound damping.

"Both kinds of structures are porous - the density is very low - which is good for aerospace applications," Dai said. "They have huge surface area compared to volume, which is good for energy storage."

Zhenhai Xia, a professor of materials science and engineering at North Texas University, will guide development through extensive multi-scale computer modeling.

Also from Case Western Reserve, Chung-Chiun Liu, the Wallace R. Persons professor of chemical engineering, will characterize the electrochemical properties of the materials and Vikas Prakash, a professor of mechanical and aerospace engineering, will characterize mechanical properties and thermal and electrical transport in these nanostructures. He will also explore the use of mechanical strain in tuning electrical and thermal transport in these materials.

Once the basic materials are made, others will hybridize them for custom uses.

Zhong Lin Wang, the Hightower Chair and Regents' professor of materials science and engineering at Georgia Institute of Technology and pioneer in piezoelectronics and nanogenerators, will integrate zinc oxide components to produce and characterize structure and property changes triggered by exposure to certain wavelengths of light, mechanical or other stimuli.

Quan Li, Director of Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute and an adjunct professor in the Chemical Physics Interdisciplinary Program at Kent State University, will tap his lab's expertise in liquid crystals to develop multi-functional capabilities.

Researchers from Wright Patterson Air Force Base, Pacific Northwest National Laboratory and GrafTech Inc., a private company in Cleveland, will also contribute to the effort.

####

For more information, please click here

Contacts:
Kevin Mayhood
Sr. News and Information Specialist
Case Western Reserve University
216-368-4442

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Military

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Aerospace/Space

National Space Society Calls For Less US Dependence On Russian Space Technology July 15th, 2014

Motorized Miniature Screw-Actuator Provides 20 nm Resolution, Based on Piezo Effect July 8th, 2014

NSS Pays Tribute to Space Pioneer Frederick I. Ordway III July 7th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

Research partnerships

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE