Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Teaming Up to Build 3-D Nanomaterials

Abstract:
A national team of experts, led by a Case Western Reserve University researcher, has received a multi-million-dollar grant to bring unrivaled qualities found in one- and two-dimensional nanomaterials into three dimensions.

Teaming Up to Build 3-D Nanomaterials

Cleveland, OH | Posted on August 10th, 2011

The scientists' goal is to produce new materials for a host of uses, ranging from high-efficiency batteries, ultracapacitors, fuel cells and hydrogen storage devices to lightweight thermal coatings for hypersonic jets, multifunctional materials for aerospace, and more.

The team, from five universities, two government research institutes and a private company, has been awarded a Department of Defense Multidisciplinary University Research Initiative grant totaling more than $7 million over five years.

The grant comes through the Air Force Office of Scientific Research. There, Joycelyn Harrison is the program manager, Ajit Roy from the Air Force Research Laboratory leads the technical advisory board.

Recent theoretical studies and computer modeling, carried out by Roy and co-workers at Wright-Patterson Air Force Base and others elsewhere, have predicted great promise for three-dimensional (3D) pillared carbon nanomaterials, but so far, no one has been able to make them with controlled and repeatable junction properties of this 3-D nanomaterials, said Liming Dai, the Kent Hale Smith professor of macromolecular science and engineering at Case Western Reserve. Dai is also director of the Center of Advanced Science and Engineering for Carbon (CASE4Carbon), and principal investigator on the grant.

"This requires a multi-university effort," he said

Dai's Center in the Department of Macromolecular Science and Engineering, The Great Lake Energy Institute, and The Institute of Advanced Materials, Case School of Engineering, at Case Western Reserve will develop technology needed to build carbon nanotubes and graphene sheets into nanoporous frameworks that would produce strong electrical and thermal conductivity and other properties in three dimensions.

His team plans to build 3D networks of alternating layers of carbon nanotubes, which are single rolled molecules that conduct strongly but only in one direction, and graphene, which is a one-atom-thick sheet of carbon and highly conductive in two directions along the plane of the sheet.

Timothy Fisher and Xiulin Ruan, professors of mechanical engineering at Purdue University, conduct experimental studies and develop predictive models of thermal-conductive nanomaterials, will focus on methods of creating and characterizing a nanoporous materials.

Nanoporous materials made of boron-carbon-nitrogen nanotubes and/or nanosheets are far less orderly than the frameworks above and would perform better at high temperatures - such as on the leading wing edge of a jet flying better than five times the speed of sound - and in such applications as thermal dissipation, mechanical and sound damping.

"Both kinds of structures are porous - the density is very low - which is good for aerospace applications," Dai said. "They have huge surface area compared to volume, which is good for energy storage."

Zhenhai Xia, a professor of materials science and engineering at North Texas University, will guide development through extensive multi-scale computer modeling.

Also from Case Western Reserve, Chung-Chiun Liu, the Wallace R. Persons professor of chemical engineering, will characterize the electrochemical properties of the materials and Vikas Prakash, a professor of mechanical and aerospace engineering, will characterize mechanical properties and thermal and electrical transport in these nanostructures. He will also explore the use of mechanical strain in tuning electrical and thermal transport in these materials.

Once the basic materials are made, others will hybridize them for custom uses.

Zhong Lin Wang, the Hightower Chair and Regents' professor of materials science and engineering at Georgia Institute of Technology and pioneer in piezoelectronics and nanogenerators, will integrate zinc oxide components to produce and characterize structure and property changes triggered by exposure to certain wavelengths of light, mechanical or other stimuli.

Quan Li, Director of Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute and an adjunct professor in the Chemical Physics Interdisciplinary Program at Kent State University, will tap his lab's expertise in liquid crystals to develop multi-functional capabilities.

Researchers from Wright Patterson Air Force Base, Pacific Northwest National Laboratory and GrafTech Inc., a private company in Cleveland, will also contribute to the effort.

####

For more information, please click here

Contacts:
Kevin Mayhood
Sr. News and Information Specialist
Case Western Reserve University
216-368-4442

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Military

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Energy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Aerospace/Space

A revolution in lithium-ion batteries is becoming more realistic September 5th, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

National Space Society Supports VP Pence's Call for Constant Low-Earth Orbit Human Presence Leading to the Settlement of Space July 13th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

A revolution in lithium-ion batteries is becoming more realistic September 5th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Research partnerships

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project