Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCLA engineers create polymer light-emitting devices that can be stretched like rubber

Stretchable polymer LED
Polymer LED before stretching, stretched to 20 percent and 45 percent uniaxial strain.
Stretchable polymer LED
Polymer LED before stretching, stretched to 20 percent and 45 percent uniaxial strain.

Abstract:
Stretchable electronics, an emerging class of modern electronic materials that can bend and stretch, have the potential to be used in a wide range of applications, including wearable electronics, "smart skins" and minimally invasive biomedical devices that can move with the body.

UCLA engineers create polymer light-emitting devices that can be stretched like rubber

Los Angeles, CA | Posted on August 6th, 2011

oday's conventional inorganic electronic devices are brittle, and while they have a certain flexibility achieved using ultrathin layers of inorganic materials, these devices are either flexible, meaning they can be bent, or they are stretchable, containing a discrete LED chip interconnected with stretchable electrodes. But they lack "intrinsic stretchabilty," in which every part of the device is stretchable.

Now, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have demonstrated for the first time an intrinsically stretchable polymer light-emitting device. They developed a simple process to fabricate the transparent devices using single-walled carbon nanotube polymer composite electrodes. The interpenetrating networks of nanotubes and the polymer matrix in the surface layer of the composites lead to low sheet resistance, high transparency, high compliance and low surface roughness.

The metal-free devices can be linearly stretched up to 45 percent and the composite electrodes can be reversibly stretched by up to 50 percent with little change in sheet resistance.

IMPACT:
Because the devices are fabricated by roll lamination of two composite electrodes that sandwich an emissive polymer layer, they uniquely combine mechanical robustness and the ability for large-strain deformation, due to the shape-memory property of the composite electrodes. This development will provide a new direction for the field of stretchable electronics.

AUTHORS:
UCLA postdoctoral fellow Zhibin Yu, UCLA professor of materials science and engineering Qibing Pei, Xiaofan Niu and Zhitian Liu

FUNDING:
The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Wileen Wong Kromhout,
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Videos/Movies

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE