Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCLA engineers create polymer light-emitting devices that can be stretched like rubber

Stretchable polymer LED
Polymer LED before stretching, stretched to 20 percent and 45 percent uniaxial strain.
Stretchable polymer LED
Polymer LED before stretching, stretched to 20 percent and 45 percent uniaxial strain.

Abstract:
Stretchable electronics, an emerging class of modern electronic materials that can bend and stretch, have the potential to be used in a wide range of applications, including wearable electronics, "smart skins" and minimally invasive biomedical devices that can move with the body.

UCLA engineers create polymer light-emitting devices that can be stretched like rubber

Los Angeles, CA | Posted on August 6th, 2011

oday's conventional inorganic electronic devices are brittle, and while they have a certain flexibility achieved using ultrathin layers of inorganic materials, these devices are either flexible, meaning they can be bent, or they are stretchable, containing a discrete LED chip interconnected with stretchable electrodes. But they lack "intrinsic stretchabilty," in which every part of the device is stretchable.

Now, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have demonstrated for the first time an intrinsically stretchable polymer light-emitting device. They developed a simple process to fabricate the transparent devices using single-walled carbon nanotube polymer composite electrodes. The interpenetrating networks of nanotubes and the polymer matrix in the surface layer of the composites lead to low sheet resistance, high transparency, high compliance and low surface roughness.

The metal-free devices can be linearly stretched up to 45 percent and the composite electrodes can be reversibly stretched by up to 50 percent with little change in sheet resistance.

IMPACT:
Because the devices are fabricated by roll lamination of two composite electrodes that sandwich an emissive polymer layer, they uniquely combine mechanical robustness and the ability for large-strain deformation, due to the shape-memory property of the composite electrodes. This development will provide a new direction for the field of stretchable electronics.

AUTHORS:
UCLA postdoctoral fellow Zhibin Yu, UCLA professor of materials science and engineering Qibing Pei, Xiaofan Niu and Zhitian Liu

FUNDING:
The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Wileen Wong Kromhout,
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Videos/Movies

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Nanoparticles get a magnetic handle: New method produces particles that can glow with color-coded light and be manipulated with magnets October 9th, 2014

NIST quantum probe enhances electric field measurements October 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE