Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rice discovery points way to graphene circuits: Materials scientists find new way to control electronic properties of graphene 'alloys'

Abstract:
Rice University materials scientists have made a fundamental discovery that could make it easier for engineers to build electronic circuits out of the much-touted nanomaterial graphene.

Rice discovery points way to graphene circuits: Materials scientists find new way to control electronic properties of graphene 'alloys'

Houston, TX | Posted on August 4th, 2011

Graphene's stock shot sky-high last year when the nanomaterial attracted the Nobel Prize in physics. Graphene is a layer of carbon atoms that is just one atom thick. When stacked atop one another, graphene sheets form graphite, the material found in pencils the world over. Thanks to the tools of nanotechnology, scientists today can make, manipulate and study graphene with ease. Its unique properties make it ideal for creating faster, more energy-efficient computers and other nanoelectronic devices.

But there are hurdles. To make tiny circuits out of graphene, engineers need to find ways to create intricate patterns of graphene that are separated by a similarly thin nonconductive material. One possible solution is "white graphene," one-atom-thick sheets of boron and nitrogen that are physically similar to graphene but are electrically nonconductive.

In a new paper in the journal Nano Letters, Rice materials scientist Boris Yakobson and colleagues describe a discovery that could make it possible for nanoelectronic designers to use well-understood chemical procedures to precisely control the electronic properties of "alloys" that contain both white and black graphene.

"We found there was a direct relationship between the useful properties of the final product and the chemical conditions that exist while it is being made," Yakobson said. "If more boron is available during chemical synthesis, that leads to alloys with a certain type of geometric arrangement of atoms. The beauty of the finding is that we can precisely predict the electronic properties of the final product based solely upon the conditions -- technically speaking, the so-called 'chemical potential' -- during synthesis."

Yakobson said it took about one year for him and his students to understand exactly the distribution of energy transferred between each atom of carbon, boron and nitrogen during the formation of the "alloys." This precise level of understanding of the "bonding energies" between atoms, and how it is assigned to particular edges and interfaces, was vital to developing a direct link from synthesis to morphology and to useful product.

With interest in graphene running high, Yakobson said, the new study has garnered attention far and wide. Graduate student Yuanyue Liu, the study's lead co-author, is part of a five-student delegation that just returned from a weeklong visit to Tsinghua University in Beijing. Yakobson said the visit was part of an ongoing collaboration between Tsinghua researchers and colleagues in Rice's George R. Brown School of Engineering.

Rice postdoctoral fellow Somnath Bhowmick also co-authored the paper. The research was funded by the Department of Energy and the Office of Naval Research, and the computational resources were supported by the National Institute for Computational Sciences and the National Science Foundation.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf .

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the research paper is available at:

Related News Press

News and information

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

NovAliX Turns to High-Resolution Cryo-Transmission Electron Microscopy for Pre-Clinical Drug Discovery Research: Thermo Fisher Scientific’s Cryo-TEM provides critical information for small molecule and biologic drug discovery February 28th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Graphene/ Graphite

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Chip Technology

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Nanoelectronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Discoveries

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

NovAliX Turns to High-Resolution Cryo-Transmission Electron Microscopy for Pre-Clinical Drug Discovery Research: Thermo Fisher Scientific’s Cryo-TEM provides critical information for small molecule and biologic drug discovery February 28th, 2017

Announcements

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

NovAliX Turns to High-Resolution Cryo-Transmission Electron Microscopy for Pre-Clinical Drug Discovery Research: Thermo Fisher Scientific’s Cryo-TEM provides critical information for small molecule and biologic drug discovery February 28th, 2017

Military

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project