Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Wayne State researcher receives NSF award to develop neural implants: Devices will help treat Alzheimerís, Parkinsonís and more

Abstract:
Neural implants have the potential to treat disorders and diseases that typically require long-term treatment, such as blindness, deafness, epilepsy, spinal cord injury, and Alzheimer's and Parkinson's. However, implantable devices have been problematic in clinical applications because of bodily reactions that limit device functioning time.

Wayne State researcher receives NSF award to develop neural implants: Devices will help treat Alzheimerís, Parkinsonís and more

Detroit, MI | Posted on August 3rd, 2011

Mark Ming-Cheng Cheng, Ph.D., assistant professor of electrical and computer engineering at Wayne State University, is out to change that. He recently received a five-year, $475,000 Faculty Early Career Development (CAREER) grant from the National Science Foundation to study the potential of graphene, a novel carbon material, in the development of a reliable, high-performance, long-term implantable electrode system to improve quality of life using nanotechnology. Cheng is collaborating with colleagues in the School of Medicine, in biomedical engineering, and in WSU's Smart Sensors and Integrated Microsystems and Nano Incubator programs.

Neural disorders and diseases result when parts of the brain don't interact properly or stop interacting altogether. Cheng said that over the past 50 years, electrodes used to stimulate connections between those parts typically stop working after a few weeks because scar tissue forms around the electrode, and the materials that comprise the electrode can't carry enough charge through the scar tissue.

Cheng hypothesizes that graphene, a flexible material recently discovered by Russian scientists, might be better suited to long-term treatment than platinum and iridium oxide, two of the most popular materials now used to make implantable electrodes. Making platinum and iridium oxide electrodes small enough to be implanted reduces the amount of charge they can carry and therefore limits their ability to stimulate neural connections. Additionally, Cheng said, signals from these electrodes to machines that record neural activity often contain a lot "noise" because of the impedance levels of the materials.

Graphene, he said, enables a larger electrical charge and can be made smaller than previous electrodes, yet still big enough to do the job. The smaller size and higher conductivity also decreases impedance, enabling clearer readings of neural activity, Cheng said.

Using graphene electrodes poses a challenge, however, because its flexibility makes it difficult to insert into tissue. In order to overcome that issue, Cheng plans to use a porous silicone "backbone" that slowly and safely biodegrades into brain tissue while releasing anti-inflammatory medication, thus limiting the formation of scar tissue.

Though it's too early to tell how long a graphene electrode will hold up after implantation, Cheng said a five-year lifespan would yield a "huge" number of potential applications in areas like neuroscience, drug delivery, bioelectronics, biosensors and security.

"Real-time sensing and treatment by neural implants can be used to treat a variety of neurological maladies," Cheng said, adding that more than 200,000 patients with full or partial paralysis may benefit from the technology in the United States alone. The cost of care for those patients is well over $200 billion annually, he said.

"This research will help advance fundamental knowledge of the interaction between the neural system and biomaterials of different electrochemical, mechanical and material properties," Cheng said. "Understanding the fundamental mechanism is important in the development of neural prostheses to aid people with disabilities."

####

About Wayne State University - Office of the Vice President for Research
Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world.

For more information, please click here

Contacts:
Julie O'Connor

313-577-8845

Copyright © Wayne State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Graphene/ Graphite

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Brain-Computer Interfaces

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project