Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A hot bath for gold nanoparticles

A schematic diagram shows a gold nanoparticle stabilized with polyvinyl alcohol (PVA) ligands.
A schematic diagram shows a gold nanoparticle stabilized with polyvinyl alcohol (PVA) ligands.

Abstract:
Gold nanoparticles, says Chris Kiely, are fast becoming some of the most effective diplomats of the nanoworld.

They facilitate a wide range of chemical reactions between molecules that would not normally interact or would do so only at much higher temperatures.

And in most cases, they effect a single favorable outcome with few, if any, unwanted side reactions.

A hot bath for gold nanoparticles

Bethlehem, PA | Posted on August 2nd, 2011

In short, says Kiely, a professor of materials science and engineering, the nanoparticles are extremely good catalysts.

Conventional methods of preparing gold nanoparticles, however, alter the morphology and catalytic activity of the particles.

Now, an international team of researchers has developed a procedure that enhances the surface exposure of gold nanoparticles and their catalytic activity over a range of reactions.

A new procedure improves on convention

The team reported its results in July in Nature Chemistry in an article titled "Facile removal of stabilizer-ligands from supported gold nanoparticles."

Its members include Kiely and Graham Hutchings, a chemist at Cardiff University in Wales in the U.K., who have studied nanogold together for more than a decade.

"In industry," says Kiely, "the most common way of preparing gold nanocatalysts is to first impregnate a nanocrystalline oxide support, such as titanium oxide (TiO2) with chloroauric acid. A reduction reaction then converts the acid into metal nanoparticles.

"Unfortunately, this leads to a variety of gold species being dispersed on the support, such as isolated gold atoms, mono- and bi-layer clusters, in addition to nanoparticles of various sizes."

An alternative technique that allows more precise control over particle size and structure, is to pre-form the gold nanoparticles in a colloidal solution before depositing them onto the support.

The disadvantage to this method is that during fabrication the nanoparticles are coated with organic molecules - ligands - that prevent them from clumping together. Once they are deposited onto a support, these ligands tend to impair the nanoparticle's catalytic performance by blocking the approach of molecules to active sites on the metal surface.

A milder form of ligand removal

Previous methods for stripping away these ligands have involved heat treatments of up to 400 degrees C.

"At these temperatures the morphology of the nanoparticles changes and they begin to coalesce," says Kiely. "There is also significant decrease in their catalytic activity."

The Kiely-Hutchings team developed a milder alternative for removing the ligands from polyvinyl alcohol-stabilized gold nanoparticles deposited on a titanium oxide support - a simple hot water wash.

Graduate student Ramchandra Tiruvalam used Lehigh's aberration-corrected JEOL 2200 FS transmission electron microscope to examine the catalysts before and after washing and to compare them with those that had undergone heat treatment to remove the ligands.

"Hot water washing had very little effect on particle size," says Kiely, who directs Lehigh's Nanocharacterization Laboratory, "and while the particles retain their cub-octahedral morphology, their surfaces appear to become more distinctly faceted. This is presumably due to some surface reconstruction occurring after losing a significant fraction of the protective PVA ligands."

"Heating the samples to 400 degrees C was also effective at removing the ligands but the average particle size increased from 3.7 to 10.4nm," says Kiely. "There was also tendency for the particles to restructure and develop flatter, more extended interfaces with the underlying TiO2 support."

For the oxidation of carbon monoxide to carbon dioxide, catalysts prepared by this colloidal/hot water wash displayed more than double the activity of conventional gold/TiO2 catalysts. This particular reaction is crucial for the removal of carbon monoxide from enclosed spaces such as submarines and space craft, prolonging the life of fuel cells, and extending the usable lifetime of a firefighter's mask.

This work was funded in part by the National Science Foundation. Tiruvalam is now a research scientist with Haldor Topsoe, a catalyst company in Copenhagen, Denmark.

####

About Lehigh University
Lehigh is a premier residential research university, ranked in the top tier of national research universities each year. We are a coeducational, nondenominational, private university that offers a distinct academic environment of undergraduate and graduate students from across the globe.

For more information, please click here

Contacts:
Carol Kiely

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Discoveries

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Announcements

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Military

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

New nanogel for drug delivery: Self-healing gel can be injected into the body and act as a long-term drug depot February 19th, 2015

Energy

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Aerospace/Space

Launch of the Alliance for Space Development March 1st, 2015

National Space Society and Space Frontier Foundation announce the formation of the Alliance for Space Development February 25th, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Fuel Cells

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Review highlights the potential for graphene and other 2D crystals in the energy sector February 4th, 2015

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE