Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A hot bath for gold nanoparticles

A schematic diagram shows a gold nanoparticle stabilized with polyvinyl alcohol (PVA) ligands.
A schematic diagram shows a gold nanoparticle stabilized with polyvinyl alcohol (PVA) ligands.

Abstract:
Gold nanoparticles, says Chris Kiely, are fast becoming some of the most effective diplomats of the nanoworld.

They facilitate a wide range of chemical reactions between molecules that would not normally interact or would do so only at much higher temperatures.

And in most cases, they effect a single favorable outcome with few, if any, unwanted side reactions.

A hot bath for gold nanoparticles

Bethlehem, PA | Posted on August 2nd, 2011

In short, says Kiely, a professor of materials science and engineering, the nanoparticles are extremely good catalysts.

Conventional methods of preparing gold nanoparticles, however, alter the morphology and catalytic activity of the particles.

Now, an international team of researchers has developed a procedure that enhances the surface exposure of gold nanoparticles and their catalytic activity over a range of reactions.

A new procedure improves on convention

The team reported its results in July in Nature Chemistry in an article titled "Facile removal of stabilizer-ligands from supported gold nanoparticles."

Its members include Kiely and Graham Hutchings, a chemist at Cardiff University in Wales in the U.K., who have studied nanogold together for more than a decade.

"In industry," says Kiely, "the most common way of preparing gold nanocatalysts is to first impregnate a nanocrystalline oxide support, such as titanium oxide (TiO2) with chloroauric acid. A reduction reaction then converts the acid into metal nanoparticles.

"Unfortunately, this leads to a variety of gold species being dispersed on the support, such as isolated gold atoms, mono- and bi-layer clusters, in addition to nanoparticles of various sizes."

An alternative technique that allows more precise control over particle size and structure, is to pre-form the gold nanoparticles in a colloidal solution before depositing them onto the support.

The disadvantage to this method is that during fabrication the nanoparticles are coated with organic molecules - ligands - that prevent them from clumping together. Once they are deposited onto a support, these ligands tend to impair the nanoparticle's catalytic performance by blocking the approach of molecules to active sites on the metal surface.

A milder form of ligand removal

Previous methods for stripping away these ligands have involved heat treatments of up to 400 degrees C.

"At these temperatures the morphology of the nanoparticles changes and they begin to coalesce," says Kiely. "There is also significant decrease in their catalytic activity."

The Kiely-Hutchings team developed a milder alternative for removing the ligands from polyvinyl alcohol-stabilized gold nanoparticles deposited on a titanium oxide support - a simple hot water wash.

Graduate student Ramchandra Tiruvalam used Lehigh's aberration-corrected JEOL 2200 FS transmission electron microscope to examine the catalysts before and after washing and to compare them with those that had undergone heat treatment to remove the ligands.

"Hot water washing had very little effect on particle size," says Kiely, who directs Lehigh's Nanocharacterization Laboratory, "and while the particles retain their cub-octahedral morphology, their surfaces appear to become more distinctly faceted. This is presumably due to some surface reconstruction occurring after losing a significant fraction of the protective PVA ligands."

"Heating the samples to 400 degrees C was also effective at removing the ligands but the average particle size increased from 3.7 to 10.4nm," says Kiely. "There was also tendency for the particles to restructure and develop flatter, more extended interfaces with the underlying TiO2 support."

For the oxidation of carbon monoxide to carbon dioxide, catalysts prepared by this colloidal/hot water wash displayed more than double the activity of conventional gold/TiO2 catalysts. This particular reaction is crucial for the removal of carbon monoxide from enclosed spaces such as submarines and space craft, prolonging the life of fuel cells, and extending the usable lifetime of a firefighter's mask.

This work was funded in part by the National Science Foundation. Tiruvalam is now a research scientist with Haldor Topsoe, a catalyst company in Copenhagen, Denmark.

####

About Lehigh University
Lehigh is a premier residential research university, ranked in the top tier of national research universities each year. We are a coeducational, nondenominational, private university that offers a distinct academic environment of undergraduate and graduate students from across the globe.

For more information, please click here

Contacts:
Carol Kiely

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Chemistry

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Military

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Energy

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New evidence for an exotic, predicted superconducting state October 27th, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Aerospace/Space

New evidence for an exotic, predicted superconducting state October 27th, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Fuel Cells

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Researchers Pump Up Oil Accumulation in Plant Leaves: Method could greatly boost energy content of crops grown for fuel October 8th, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE