Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn Researchers Help Graft Olfactory Receptors onto Nanotubes

A rendering of olfactory receptor proteins attached to a nanotube (Art: Robert Johnson)
A rendering of olfactory receptor proteins attached to a nanotube (Art: Robert Johnson)

Abstract:
Penn researchers have helped develop a nanotech device that combines carbon nanotubes with olfactory receptor proteins, the cell components in the nose that detect odors.

Penn Researchers Help Graft Olfactory Receptors onto Nanotubes

Philadelphia, PA | Posted on July 26th, 2011

Because olfactory receptors belong to a larger class of proteins that are involved in passing signals through the cell membrane, these devices could have applications beyond odor sensing, such as pharmaceutical research.

The research was led by professor A. T. Charlie Johnson, postdoctoral fellow Brett R. Goldsmith and graduate student Mitchell T. Lerner of the Department of Physics and Astronomy in the School of Arts and Sciences, along with assistant professor Bohdana M. Discher and postdoctoral fellow Joseph J. Mitala Jr. of the Department of Biophysics and Biochemistry at Penn's Perelman School of Medicine. They collaborated with researchers from the Monell Chemical Senses Center, the University of Miami, the University of Illinois, Princeton University and two private companies, Nanosense Inc. and Evolved Machines Inc.

Their work was published in the journal ACS Nano.

The Penn team worked with olfactory receptors derived from mice, but all olfactory receptors are part of a class of proteins known as G Protein Coupled Receptors, or GPCRs. These receptors sit on the outer membrane of cells, where certain chemicals in the environment can bind to them. The binding action is the first step in a chemical cascade that leads to a cellular response; in the case of an olfactory receptor, this cascade leads to the perception of a smell.

The Penn team succeeded in building an interface between this complicated protein and a carbon nanotube transistor, allowing them to convert the chemical signals the receptor normally produces to electrical signals, which could be incorporated in any number of tools and gadgets.

"Our nanotech devices are read-out elements; they eavesdrop on what the olfactory receptors are doing, specifically what molecules are bound to them," Johnson said.

As the particular GPCR the team worked with was an olfactory receptor, the test case for their nanotube device was to function as sensor for airborne chemicals.

"If there's something in the atmosphere that wants to bind to this molecule, the signal we get through the nanotube is about what fraction of the time is something bound or not. That means we can get a contiguous read out that's indicative of the concentration of the molecule in the air," Johnson said.

While one could imagine scaling up these nanotube devices into a synthetic nose — making one for each of the approximately 350 olfactory GPCRs in a human nose, or the 1,000 found in a dog's — Johnson thinks that medical applications are much closer to being realized.

"GPCRs are common drug targets," he said. "Since they are known to be very important in cell-environment interactions, they're very important in respect to disease pathology. In that respect, we now have a pathway into interrogating what those GPCRs actually respond to. You can imagine building a chip with many of these devices, each with different GPCRs, and exposing them all at once to various drugs to see which is effective at triggering a response."

Figuring out what kinds of drugs bind most effectively to GPCRs is important because pathogens often attack through those receptors as well. The better a harmless chemical attaches to a relevant GPCR, the better it is at blocking the disease.

The Penn team also made a technical advancement in stabilizing GPCRs for future research.

"In the past, if you take a protein out of a cell and put it onto a device, it might last for a day. But here, we embedded it in a nanoscale artificial cell membrane, which is called a nanodisc," Johnson said. "When we did that, they lasted for two and half months, instead of a day."

Increasing the lifespans of such devices could be beneficial to two scientific fields with increasing overlap, as the as evidenced by the large, interdisciplinary research team involved in the study.

"The big picture is integrating nanotechnology with biology, " Johnson said. "These complicated molecular machines are the prime method of communication between the interior of the cell and the exterior, and now we're incorporating their functionality with our nanotech devices."

In addition to Johnson, Goldsmith, Lerner, Discher and Mitala, the research was conducted by Jesusa Josue and Joseph G. Brand of Monell; Alan Gelperin of Monell and Princeton; Ana Castro and Charles W. Luetje of the University of Miami; Timothy H. Bayburt and Stephen G. Sligar of the University of Illinois, Urbana; Samuel M. Khamis of Adamant Technologies, Ryan A. Jones of Nanosense Inc.; and Paul A. Rhodes of Nanosense Inc. and Evolved Machines Inc.

The research was supported by the Defense Advanced Research Projects Agency's RealNose project, Penn's Nano/Bio Interface Center, the National Science Foundation and the Department of Defense.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nanotubes/Buckyballs

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

SouthWest NanoTechnologies Inc. Announces $2.7 Million in New Financing to Fund Growth, Plant Expansion and Technical Personnel August 11th, 2014

Nanomedicine

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Sensors

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Non-Enzyme Nanosensors Quickly Measure Blood Sugar August 12th, 2014

Discoveries

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Military

New material could enhance fast and accurate DNA sequencing August 13th, 2014

On the frontiers of cyborg science August 10th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE