Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn Researchers Help Graft Olfactory Receptors onto Nanotubes

A rendering of olfactory receptor proteins attached to a nanotube (Art: Robert Johnson)
A rendering of olfactory receptor proteins attached to a nanotube (Art: Robert Johnson)

Abstract:
Penn researchers have helped develop a nanotech device that combines carbon nanotubes with olfactory receptor proteins, the cell components in the nose that detect odors.

Penn Researchers Help Graft Olfactory Receptors onto Nanotubes

Philadelphia, PA | Posted on July 26th, 2011

Because olfactory receptors belong to a larger class of proteins that are involved in passing signals through the cell membrane, these devices could have applications beyond odor sensing, such as pharmaceutical research.

The research was led by professor A. T. Charlie Johnson, postdoctoral fellow Brett R. Goldsmith and graduate student Mitchell T. Lerner of the Department of Physics and Astronomy in the School of Arts and Sciences, along with assistant professor Bohdana M. Discher and postdoctoral fellow Joseph J. Mitala Jr. of the Department of Biophysics and Biochemistry at Penn's Perelman School of Medicine. They collaborated with researchers from the Monell Chemical Senses Center, the University of Miami, the University of Illinois, Princeton University and two private companies, Nanosense Inc. and Evolved Machines Inc.

Their work was published in the journal ACS Nano.

The Penn team worked with olfactory receptors derived from mice, but all olfactory receptors are part of a class of proteins known as G Protein Coupled Receptors, or GPCRs. These receptors sit on the outer membrane of cells, where certain chemicals in the environment can bind to them. The binding action is the first step in a chemical cascade that leads to a cellular response; in the case of an olfactory receptor, this cascade leads to the perception of a smell.

The Penn team succeeded in building an interface between this complicated protein and a carbon nanotube transistor, allowing them to convert the chemical signals the receptor normally produces to electrical signals, which could be incorporated in any number of tools and gadgets.

"Our nanotech devices are read-out elements; they eavesdrop on what the olfactory receptors are doing, specifically what molecules are bound to them," Johnson said.

As the particular GPCR the team worked with was an olfactory receptor, the test case for their nanotube device was to function as sensor for airborne chemicals.

"If there's something in the atmosphere that wants to bind to this molecule, the signal we get through the nanotube is about what fraction of the time is something bound or not. That means we can get a contiguous read out that's indicative of the concentration of the molecule in the air," Johnson said.

While one could imagine scaling up these nanotube devices into a synthetic nose making one for each of the approximately 350 olfactory GPCRs in a human nose, or the 1,000 found in a dog's Johnson thinks that medical applications are much closer to being realized.

"GPCRs are common drug targets," he said. "Since they are known to be very important in cell-environment interactions, they're very important in respect to disease pathology. In that respect, we now have a pathway into interrogating what those GPCRs actually respond to. You can imagine building a chip with many of these devices, each with different GPCRs, and exposing them all at once to various drugs to see which is effective at triggering a response."

Figuring out what kinds of drugs bind most effectively to GPCRs is important because pathogens often attack through those receptors as well. The better a harmless chemical attaches to a relevant GPCR, the better it is at blocking the disease.

The Penn team also made a technical advancement in stabilizing GPCRs for future research.

"In the past, if you take a protein out of a cell and put it onto a device, it might last for a day. But here, we embedded it in a nanoscale artificial cell membrane, which is called a nanodisc," Johnson said. "When we did that, they lasted for two and half months, instead of a day."

Increasing the lifespans of such devices could be beneficial to two scientific fields with increasing overlap, as the as evidenced by the large, interdisciplinary research team involved in the study.

"The big picture is integrating nanotechnology with biology, " Johnson said. "These complicated molecular machines are the prime method of communication between the interior of the cell and the exterior, and now we're incorporating their functionality with our nanotech devices."

In addition to Johnson, Goldsmith, Lerner, Discher and Mitala, the research was conducted by Jesusa Josue and Joseph G. Brand of Monell; Alan Gelperin of Monell and Princeton; Ana Castro and Charles W. Luetje of the University of Miami; Timothy H. Bayburt and Stephen G. Sligar of the University of Illinois, Urbana; Samuel M. Khamis of Adamant Technologies, Ryan A. Jones of Nanosense Inc.; and Paul A. Rhodes of Nanosense Inc. and Evolved Machines Inc.

The research was supported by the Defense Advanced Research Projects Agency's RealNose project, Penn's Nano/Bio Interface Center, the National Science Foundation and the Department of Defense.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Sensors

The next generation of carbon monoxide nanosensors May 26th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Discoveries

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Announcements

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Military

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

Nanobiotechnology

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic