Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanomembranes promise new materials for advanced electronics

Abstract:
The camera in your phone collects light on silicon and translate that information into digital bits. One of the reasons those cameras and phones continue to improve is that researchers are developing new materials that absorb more light, use less power, and are less expensive to produce.

Nanomembranes promise new materials for advanced electronics

Madison, WI | Posted on July 21st, 2011

Now, University of Wisconsin-Madison materials science and engineering researchers have introduced innovations that could make possible a wide range of new crystalline materials. Writing in the June 8 web issue of the American Chemical Society journal ACS Nano, Research Assistants Deborah Paskiewicz and Boy Tanto along with Scientist Donald Savage and Erwin W. Mueller Professor and Bascom Professor of Surface Science Max Lagally, describe a new approach for using thin sheets of semiconductor known as nanomembranes.

Controlled stretching of these membranes via epitaxy allows the team to fabricate fully elastically relaxed silicon germanium nanomembranes for use as growth substrates for new materials. The team grew defect-free silicon germanium layers with any desired germanium concentration on silicon substrates and then released the silicon germanium layers from the rigid silicon, allowing them to relax completely as free-standing nanomaterials. The silicon germanium film is then transferred to a new host and bonded there. From this stage, a defect-free bulk silicon germanium crystal can be grown (something not possible with current technology), or the silicon germanium membrane can be used as a unique substrate to grow other materials.

Epitaxy, growth that controls the arrangement of atoms in thin layers on a substrate, is the fundamental technology underlying the semiconductor industry's use of these new materials. By combining elements, researchers can grow materials with unique properties that make possible new kinds of sensors or high speed, low-power, efficient advanced electronics. It is the ability to grow them without detrimental defects that makes these alloys useful to the semiconductor industry. However, making high-quality crystals that combine two or more elements faces significant limitations that have vexed researchers for decades.

"Many materials consisting of more than one element simply cannot be used. The distances between atoms are not the same," says Lagally. "When one begins to grow such a layer, the atoms start to interfere with each other and very soon the material no longer can grow as just one crystal because it starts to have defects in it. Eventually, it breaks up into small crystals and becomes polycrystalline, or even cracks."

In addition to its use in the semiconductor industry, silicon germanium is important to the nascent field of quantum computing. A quantum computer makes direct use of quantum mechanical phenomena such as superposition and entanglement to perform calculations. Current computers are limited to two states; on and off, or zero and one. With superposition, quantum computers encode information as quantum bits. These bits represent the varying states and inner workings of atoms and electrons. By manipulating these multiple states simultaneously, a large-scale quantum computer, if it can be built, could be millions of times more powerful than today's most powerful classical supercomputer.

"UW-Madison Physics Professor Mark Eriksson uses silicon germanium to make two-dimensional electron gases. A ‘two-dimensional electron gas' is a layer of a semiconductor in which charges are able to move freely over large distances, in analogy with atoms in a real gas, except confined to a thin layer and hence two-dimensional. For quantum computing, this 2-D electron gas is formed in a strained-silicon layer grown on a silicon germanium substrate. Electrodes put on top of a structure containing the 2-D electron gas in the strained-silicon layer allow one to move and control single electrons, turning regions of the quantum well into ‘electron buckets,' if you will, that are defined by the electric fields from the top electrodes,' says Lagally.

A major obstacle to developing a quantum computer is creating multiple quantum buckets as similar as possible. To make rapid progress, researchers need low-defect and consistent materials.

"With the silicon germanium substrates we have been using, the electrostatic fields can be quite uncertain because of the defects in the substrate," says Lagally. "We believe our new process can fix that. Because the substrate material is uniform, without defects, it should bring more predictability and control to Mark's efforts."

Beyond silicon germanium, Lagally says the process should work for a wide range of exotic materials that cannot be grown in bulk but have interesting properties. Materials Science and Engineering Associate Professor Paul Evans develops new ways to probe and apply these materials.

"The thin defect-free substrates that can be produced by transferring and relaxing these layers present exciting opportunities in the growth of materials beyond silicon and other traditional semiconductors," Evans says. "With this approach, it will be possible to produce defect-free substrates of materials for which no high-crystalline quality bulk materials exist. In complex oxides, this can lead to thin substrates that stabilize specific ferroelectric or dielectric phases. That could lead to better oscillators, sensors and optical devices, that are important to the cell phones, cameras and computers we use everyday."

This research is funded by the U.S. Department of Energy with facilities support by the National Science Foundation and the UW-Madison Materials Research Science and Engineering Center as well as the NSF Graduate Research Fellowship Program.

####

For more information, please click here

Contacts:
Jim Beal

College of Engineering
1415 Engineering Drive
Madison, WI 53706

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Chip Technology

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

Nanoelectronics

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Solution-grown nanowires make the best lasers April 14th, 2015

Water makes wires even more nano: Rice University lab extends meniscus-mask process to make sub-10 nanometer paths April 6th, 2015

Demonstration of 50GHz Ge Waveguide Electro-Absorption Modulator April 2nd, 2015

Discoveries

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE