Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanosized diamonds enable progress in retinal prostheses

Abstract:
Research groups in several countries are making progress in retinal prosthesis development. If they achieve their aims, patients who have gone blind, due to loss of their photoreceptors, could recover a better simplified form of vision than with available prostheses. One of the groups shows that diamonds could lead the way.

Nanosized diamonds enable progress in retinal prostheses

EU | Posted on June 17th, 2011

An artificial device in the form of a retinal prosthesis can replace dead photoreceptor cells by electrically stimulating the remaining neurons. Two examples of retinal prostheses are digital camera-type electrode arrays and photodiode arrays. However, they have exhibited low output of electric currents meaning external batteries are needed, low sensitivity and poor biocompatibility.

Researchers at Okayama University Graduate School of Medicine in Japan have tried to improve the performance of prostheses through the development of thin and soft photoelectric dye-based retinal prostheses, where the photoelectric dye chosen was not toxic to cells. By using a behavior test, they could see that the subretinal prototype implantation in rats led to recovery of vision. These prostheses absorb light and transform photon energy to produce electric potentials.

Scientists at the University of Tübingen in Germany have recently developed another subretinal prosthesis and tested it on patients. They have managed to show, for the first time, that micro-electrode arrays containing 1500 photodiodes can give previously blind patients a meaningful and detailed visual perception. Through a corresponding pattern of 38 x 40 pixels produced by the chip, one patients could for example read large letters as complete words, localize and approach persons freely and describe different sorts of fruit.

While another team of researchers from Moorfields Eye Hospital, Manchester Royal Eye Hospital, Quinze-Vingts, Second Sight, Retina Foundation Southwest and Johns Hopkins University, has shown for the first time that a large group of blind patients fitted with a retinal prosthesis can identify letters successfully. The patients used the Argus II Retinal Prosthesis System, but the researchers are working on the third model, increasing the number of electrodes from 60 to 240.

Researchers connected to the European Commission-funded project DREAMS are instead working on new types of nanotransducers, electric devices converting energy from one form to another, based on artificial nanocystalline diamond. The reasons for using diamond to coat the prosthesis are that this semiconductor show stability, biocompatibility and allow for reduced stimulation currents to improve the resolution from 60 pixels, where only shapes and colors can be seen, to 1000 pixels.
The scientists have tested the tiny prosthesis on retinal cells to see that it can replace the photoreceptors and U.S. colleagues have shown that a similar implant in humans can function. However, no clinical trials using the nanodiamond approach have been conducted.

Much more work is needed before any of these retinal prostheses can be widely available to patients, but the achievements made so far mean that thousands of people could be offered the possibility to recover an improved simplified form of vision in a not too distant future.

####

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 72
Fax: + 39 02 700 25 40

Copyright © youris.com - EU research Media Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Academic/Education

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Personal Care

Application of Egg White in Production of Nanoparticles April 6th, 2015

Sunblock poses potential hazard to sea life August 20th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Nanotechnology used in sunscreens: a Mexican achievement May 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project