Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imec develops procedure for carrier profiling in nanowire-based transistors

Quantitative 2D-carrier distribution for nanowire diameters of 400nm and 100nm. The difference in drain doping is reflected in the TFET off current.
Quantitative 2D-carrier distribution for nanowire diameters of 400nm and 100nm. The difference in drain doping is reflected in the TFET off current.

Abstract:
Imec's researchers have developed a methodology to quantitatively map the distribution of active dopants in confined 3D-volumes. This is an important step towards in-depth understanding of transistors based on semiconductor nanowires. The new methodology is based on high-vacuum scanning spreading resistance microscopy (HV-SSRM).

Imec develops procedure for carrier profiling in nanowire-based transistors

Leuven, Belgium | Posted on June 16th, 2011

Semiconductor nanowires are one of the most promising building blocks for future nanoelectronic devices such as transistors, sensors and solar cells. Nanowire-based tunnel field-effect transistors (TFETs), for example, are widely seen as potential successors of standard MOSFETs, due to the absence of a 60mV/dec sub-threshold swing limitation and reduced short-channel effects.

But to optimize the fabrication processes for such high-performance devices, it is necessary to have a thorough understanding of the active dopant (carrier) distribution. Therefore, researchers from imec have recently extended the applicability of HV-SSRM as a metrology tool for carrier mapping to fully integrated nanowire-based transistors.

Applying HV-SSRM to Si-nanowire-based tunnel-FETs, the team identified a diameter-dependent dopant-deactivation mechanism. This mechanism occurs in small 3D structures only and cannot be predicted using standard process simulation tools. It could be shown experimentally and through device simulations that this phenomenon directly impacts the device characteristics. The validity of the technique is proved by the observance of the diameter dependency of the carrier distribution in the nanowire top-section. This results from a tilted ion implantation step and is perfectly in agreement with results from process simulations.

Scanning spreading resistance microscopy (SSRM) is a technique with a unique combination of high spatial resolution (1 to 3nm) and high sensitivity. SSRM is based on atomic force microscopy and was invented by W. Vandervorst et al. at imec in 1994. During the last decade, it has evolved into the method of choice for carrier profiling in planar MOS transistors. With this work, imec applied HV-SSRM to Si-nanowire-based tunnel-FETs, proving its validity to study carrier distribution in semiconductor nanowires. It also showed that HV-SSRM is capable of revealing physical phenomena which are present in small, 3D structures only, and which cannot be predicted by blanket experiments. Such information is essential for the process development of future nanowire-based devices.

This study has been published in Nanotechnology - issue 18 (volume 22). An illustration from the study was selected for the cover of the journal.

The paper can be accessed on iopscience.iop.org/0957-4484/22/18/185701.

####

About Imec
Imec performs world-leading research in nano-electronics and nano-technology. Its staff of more than 1,900 people includes over 500 industrial residents and guest researchers. Imec’s research is applied in better healthcare, smart electronics, sustainable energy, and safer transport.

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © Imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Sensors

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Nanoelectronics

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Tools

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Solar/Photovoltaic

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project