Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec develops procedure for carrier profiling in nanowire-based transistors

Quantitative 2D-carrier distribution for nanowire diameters of 400nm and 100nm. The difference in drain doping is reflected in the TFET off current.
Quantitative 2D-carrier distribution for nanowire diameters of 400nm and 100nm. The difference in drain doping is reflected in the TFET off current.

Abstract:
Imec's researchers have developed a methodology to quantitatively map the distribution of active dopants in confined 3D-volumes. This is an important step towards in-depth understanding of transistors based on semiconductor nanowires. The new methodology is based on high-vacuum scanning spreading resistance microscopy (HV-SSRM).

Imec develops procedure for carrier profiling in nanowire-based transistors

Leuven, Belgium | Posted on June 16th, 2011

Semiconductor nanowires are one of the most promising building blocks for future nanoelectronic devices such as transistors, sensors and solar cells. Nanowire-based tunnel field-effect transistors (TFETs), for example, are widely seen as potential successors of standard MOSFETs, due to the absence of a 60mV/dec sub-threshold swing limitation and reduced short-channel effects.

But to optimize the fabrication processes for such high-performance devices, it is necessary to have a thorough understanding of the active dopant (carrier) distribution. Therefore, researchers from imec have recently extended the applicability of HV-SSRM as a metrology tool for carrier mapping to fully integrated nanowire-based transistors.

Applying HV-SSRM to Si-nanowire-based tunnel-FETs, the team identified a diameter-dependent dopant-deactivation mechanism. This mechanism occurs in small 3D structures only and cannot be predicted using standard process simulation tools. It could be shown experimentally and through device simulations that this phenomenon directly impacts the device characteristics. The validity of the technique is proved by the observance of the diameter dependency of the carrier distribution in the nanowire top-section. This results from a tilted ion implantation step and is perfectly in agreement with results from process simulations.

Scanning spreading resistance microscopy (SSRM) is a technique with a unique combination of high spatial resolution (1 to 3nm) and high sensitivity. SSRM is based on atomic force microscopy and was invented by W. Vandervorst et al. at imec in 1994. During the last decade, it has evolved into the method of choice for carrier profiling in planar MOS transistors. With this work, imec applied HV-SSRM to Si-nanowire-based tunnel-FETs, proving its validity to study carrier distribution in semiconductor nanowires. It also showed that HV-SSRM is capable of revealing physical phenomena which are present in small, 3D structures only, and which cannot be predicted by blanket experiments. Such information is essential for the process development of future nanowire-based devices.

This study has been published in Nanotechnology - issue 18 (volume 22). An illustration from the study was selected for the cover of the journal.

The paper can be accessed on iopscience.iop.org/0957-4484/22/18/185701.

####

About Imec
Imec performs world-leading research in nano-electronics and nano-technology. Its staff of more than 1,900 people includes over 500 industrial residents and guest researchers. Imec’s research is applied in better healthcare, smart electronics, sustainable energy, and safer transport.

For more information, please click here

Contacts:
Barbara Kalkis
Maestro Marketing & PR

Copyright © Imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Possible Futures

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Sensors

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Announcements

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Tools

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Solar/Photovoltaic

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project