Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CNST Researchers Develop Integrated Nanomechanical Sensor for Atomic Force Microscopy



Scanning electron micrograph of the cantilever-microdisksystem.
The image has a calculated z-component of the magnetic
field overlaid on the structure.
Scanning electron micrograph of the cantilever-microdisksystem. The image has a calculated z-component of the magnetic field overlaid on the structure.

Abstract:
The atomic force microscope (AFM) is an important tool for nanoscale surface metrology. Typical AFMs map local tip-surface interactions by scanning a flexible cantilever probe over a surface. They rely on bulky optical sensing instrumentation to measure the motion of the probe, which limits the sensitivity, stability, and accuracy of the microscope, and precludes the use of probes much smaller than the wavelength of light. As reported in Nano Letters,* CNST researchers have fabricated a novel integrated sensor combining a nanomechanical cantilever probe with a high sensitivity nanophotonic interferometer on a single silicon chip. Replacing the bulky laser detection system allowed them to build cantilevers orders of magnitude smaller than those used in conventional AFMs.

CNST Researchers Develop Integrated Nanomechanical Sensor for Atomic Force Microscopy

Gaithersburg, MD | Posted on June 6th, 2011

Because each of these smaller structures has an effective mass less than a picogram, the detection bandwidth is dramatically increased, reducing the system response time to a few hundred nanoseconds. While probe stiffness was kept comparable to conventional microcantilevers in order to maintain high mechanical gain (how much the tip moves when it senses a force change), the probe size was reduced to a mere 25 µm in length, 260 nm in thickness, and only 65 nm in width. Readout is based on "cavity optomechanics", with the probe fabricated adjacent to a microdisk optical cavity at a gap of less than 100 nm. Due to this close separation, light circulating within the cavity is strongly influenced by the motion of the probe tip. The cavity has a high optical quality factor (Q), meaning that the light makes tens of thousands of round-trips inside the cavity before leaking out of it, all the time accumulating information about the probe's position. The combination of small probe-cavity separation and high Q gives the device sensitivity to probe motion at less than 1 fm/√Hz, while the cavity is able to sense changes in probe position with high bandwidth. The entire device is nanofabricated as a single, monolithic unit on a silicon wafer. It is therefore compact (chip-scale), self-aligned, and stable. Fiber optic waveguides couple light into and out of the sensor, so that it can be easily interfaced with standard optical sources and detectors. Finally, through simple changes to the probe geometry, the mechanics of the probe tip can be greatly varied, allowing for the different combinations of mechanical gain and bandwidth needed for a variety of AFM applications.

*Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator, K. Srinivasan, H. Miao, M.T. Rakher, M. Davanco, and V. Aksyuk, Nano Letters 11, 791-797 (2011).

####

About National Institute of Standards and Technology (NIST)
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Kartik Srinivasan
301-975-5938

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Imaging

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Three-dimensional Direction-dependent Force Measurement at the Subatomic Scale: International researchers led by Osaka University develop a microscopy technique to probe materials at the subatomic scale in multiple directions simultaneously May 11th, 2017

Oxford Instruments Asylum Research and Microscopy and Analysis Present the Webinar: “Video-Rate Atomic Force Microscopy Enables New Research Opportunities” May 9th, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Tools

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project