Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Tiny Technologies Promise Powerful Protection: U.S. Army institute researches nanosciences for soldier safety

June 5th, 2011

Tiny Technologies Promise Powerful Protection: U.S. Army institute researches nanosciences for soldier safety

Abstract:
Today's dismounted infantry soldier often packs more than 140 pounds and still has incomplete ballistic protection, insufficient defense against chemical and biological weapons, and too many pieces of equipment that do not work well together, according to officials at the U.S. Army Research Office's Institute for Soldier Nanotechnologies. Reducing the cumbersome weight that soldiers lug around on the battlefield is a major priority for the Army, which is intent on transforming itself into a lighter, more flexible 21st century force. Research being conducted at the institute one day could help transform current combat fatigues and bulky equipment into a do-it-all battle uniform that not only is lightweight but also provides many other benefits.

Basic research conducted at the Institute for Soldier Nanotechnologies (ISN), which is housed within the Massachusetts Institute of Technology (MIT), is designed to develop and exploit nanotechnology to improve soldier survivability dramatically. The ultimate goal is to help the Army create a 21st century battlesuit that combines high-technology capabilities with light weight and comfort. Army officials envision a thin, bullet-resistant uniform that monitors health, eases injuries, communicates automatically, and reacts instantly to chemical and biological agents. The multipurpose battle uniform is a long-range vision for how fundamental nanoscience might make soldiers less vulnerable to an array of threats, whether from the enemy or the environment.

Source:
afcea.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Sensors

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Military

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Textiles/Clothing

The impact of anti-odor clothing on the environment March 31st, 2016

No more washing: Nano-enhanced textiles clean themselves with light: New technique to grow nanostructures that degrade organic matter when exposed to light March 23rd, 2016

Stretchable electronics that quadruple in length March 4th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic