Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn Researchers Help Nanoscale Engineers Choose Self-Assembling Proteins

Abstract:
Engineering structures on the smallest possible scales - using molecules and individual atoms as building blocks - is both physically and conceptually challenging. An interdisciplinary team of researchers at the University of Pennsylvania has now developed a method of computationally selecting the best of these blocks, drawing inspiration from the similar behavior of proteins in making biological structures.

Penn Researchers Help Nanoscale Engineers Choose Self-Assembling Proteins

Philadelphia, PA | Posted on May 30th, 2011

The team was led by postdoctoral student Gevorg Grigoryan and professor William DeGrado of the Department of Biochemistry and Biophysics in Penn's Perelman School of Medicine, as well as graduate student Yong Ho Kim of the Department of Chemistry in Penn's School of Arts and Sciences. Their colleagues included members of the Department of Physics and Astronomy in SAS.

Their research was published in the journal Science today.

The team set out to design proteins that could wrap around single-walled carbon nanotubes. Consisting of a cylindrical pattern of carbon atoms tens of thousands of times thinner than a human hair, nanotubes are enticing to nanoengineers as they are extraordinarily strong and could be useful as platform for other nano-structures.

"We wanted to achieve a specific geometric pattern of the atoms that these proteins are composed of on the surface of the nanotube," Grigoryan said. "If you know the underlying atomic lattice, it means that you know how to further build around it, how to attach things to it. It's like scaffolding for future building."

The hurdle in making such scaffolds isn't a lack of information, but a surfeit of it: researchers have compiled databases that list hundreds of thousands of actual and potential protein structures in atomic detail. Picking the building materials for a particular structure from this vast array and assuring that they self-assemble into the desired shape was beyond the abilities of powerful computers, much less humans.

"There's just an enormous space of structural possibilities to weed through trying to figure out which are feasible," Grigoryan said. "To have a process that can do that quickly, that can look at a structure and say ‘that's not reasonable, that can't be built out of common units,' would solve that problem."

The researchers' algorithm works in three steps, which, given the parameters of the desired scaffolding, successively eliminate proteins that will not produce the right shape. The elimination criteria were based on traits like symmetry, periodicity of binding sites and similarity to protein "motifs" found in nature.

After separating the wheat from the chaff, the result is a list of thousands of candidate proteins. While still a daunting amount, the algorithm makes the protein selection process merely difficult, rather than impossible.

The research team tested their algorithm by designing a protein that would not only stably wrap around a nanotube in a helix but also provide a regular pattern on its exterior to which gold particles could be attached.

"You could use this to build a gold nanowire, for instance, or modulate the optical properties of the underlying tube in desired ways" Grigoryan said.

Next steps will include applying this algorithm for designing proteins that can attach to graphene, which is essentially an unrolled nanotube. Being able to make scaffolds out of customizable array of proteins in a variety of shapes could lead to advances in everything from miniaturization of circuitry to drug delivery.

Engineering these materials in the lab requires a tremendous amount of precision and computational power, but such efforts are essentially mimicking a phenomenon found in even the simplest forms of life.

"The kind of packing that certain viruses have in their viral envelope is similar to what we have here in that they self-assemble. They have protein units that, on their own, form their complicated structures with features that are far beyond the size of any single protein," Grigoryan said. "Each protein doesn't know what the final structure is going to be, but it still helps form it. We were inspired by that."

In addition to Grigoryan, DeGrado and Kim, researchers included Rudresh Acharya of the Department of Biochemistry and Biophysics in the Perelman School of Medicine and Kevin Axelrod, Rishabh M. Jain, Lauren Willis, Marija Drndic and James M. Kikkawa of the Department of Physics and Astronomy in SAS.

Their research was supported by the National Science Foundation and the National Institutes of Health.

####

For more information, please click here

Contacts:
Michael Bezilla
Director
Research Communications Group
(814) 865-9481


Lisa Powers
Director
Public Information
(814) 865-7517

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotechnology Applied to Remove Heavy Metallic Ions from Water December 29th, 2014

Iranian Scientists Produce Silver Nanoparticles from Eucalyptus Extract December 29th, 2014

Production of Nanosorbent in Iran to Remove Aromatic Pollutants December 26th, 2014

Nano Filter cleans dirty industry December 24th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Mind the gap' between atomically thin materials December 23rd, 2014

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Molecular Nanotechnology

'Mind the gap' between atomically thin materials December 23rd, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Self Assembly

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanotubes/Buckyballs

Production of Nanosorbent in Iran to Remove Aromatic Pollutants December 26th, 2014

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Announcements

Nanotechnology Applied to Remove Heavy Metallic Ions from Water December 29th, 2014

Iranian Scientists Produce Silver Nanoparticles from Eucalyptus Extract December 29th, 2014

Production of Nanosorbent in Iran to Remove Aromatic Pollutants December 26th, 2014

Nano Filter cleans dirty industry December 24th, 2014

Research partnerships

How electrons split: New evidence of exotic behaviors December 23rd, 2014

'Mind the gap' between atomically thin materials December 23rd, 2014

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE