Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > William & Mary joins Virginia Nanoelectronics Center

Lab work: Ale Lukaszew, William & Mary's VMEC Professor of Physics and Applied Science, works in her McGlothlin-Street Hall laboratory. Lukaszew will join a number of other Virginia researchers in ViNC—the newly formed Virginia Nanoelectronics Center. While ViNC is based at the University of Virginia, Lukaszew will lead a surface-characterization team in a new lab in Small Hall here at William & Mary.
Lab work: Ale Lukaszew, William & Mary's VMEC Professor of Physics and Applied Science, works in her McGlothlin-Street Hall laboratory. Lukaszew will join a number of other Virginia researchers in ViNC—the newly formed Virginia Nanoelectronics Center. While ViNC is based at the University of Virginia, Lukaszew will lead a surface-characterization team in a new lab in Small Hall here at William & Mary.

Abstract:
Vanadium dioxide—or VO2—is an interesting substance with a number of intriguing properties, including its propensity to switch from an insulator to a conductor at moderate temperatures.

William & Mary joins Virginia Nanoelectronics Center

Williamsburg, VA | Posted on May 26th, 2011

"One application that has been already thought for this material is to use it as a thermographic coating for windows," Ale Lukaszew said. "Because if you have a material that becomes a conductor above some temperature, it means that it becomes like all metals—a reflector of light."

VO2-coated windows become opaque and reflective when they get hot enough, keeping the sun and the heat out. "That's a nice feature of this material," she said, "but VO2 also has possibilities for less pedestrian applications."

Lukaszew, William & Mary's VMEC Professor of Physics and Applied Science, is leading a group studying VO2 and other materials that have interesting applications for nanoelectronics. The William & Mary group is part of a new industry-academia-government collaboration, the Virginia Nanoelectronics Center (ViNC). ViNC is based at the University of Virginia; the partnership also includes Old Dominion University.

ViNC was launched at a May 25 kickoff event in Charlottesville. Research at ViNC will serve as the foundation for producing faster, smaller and more affordable components in everything from mobile devices and computers to automobiles and energy-efficient homes.

"This is a fantastic example of the kind of R & D partnership that will help propel Virginia to the forefront of the innovation economy," said Jim Duffey, Virginia's secretary of technology.

ViNC will bring together world-class researchers to explore and develop advanced materials, novel devices and circuits at nanoscale dimensions. It will operate under the auspices of the U. Va. Institute for Nanoscale and Quantum Scientific and Technological Advanced Research, or nanoSTAR, based at U. Va. All three university partners have worked closely with Micron Technology, Inc., one of the world's leading providers of advanced semiconductor solutions with a memory chip manufacturing facility in Manassas, Va., to launch the new center.

"This new center is positioning Virginia at the heart of the development of a new nanoscale technology," said Stuart Wolf, director of nanoSTAR and ViNC. "This center could establish the Commonwealth as the ‘oxide hills' rather than a new ‘silicon valley.'"

Wolf will work closely with a number of co-principal investigators, including Lukaszew and her fellow VMEC Professors from U. Va. and ODU, Lloyd Harriott and Helmut Baumgart. The Commonwealth is supporting the new center through VMEC, the Virginia Microelectronics Consortium, a state-funded, industry-university consortium dedicated to the development of microelectronics in the state.

"Here at William & Mary, we can't say enough good things about Stu Wolf," said Dennis Manos, vice provost for research. " ViNC is going to be a wonderful collaboration and Stu is the guy who put it all together."

An important aspect of ViNC researchers' work will be the discovery and development of materials for advanced information technologies. Scientists generally agree that the fundamental limits of the current microelectronics technology—known as complementary metal oxide semiconductor, or CMOS—will be reached in about a decade. ViNC will develop novel devices and circuits for "beyond CMOS" nanoelectronics. The center's initial project is the development of information processing based on VO2 in place of traditional technologies. This approach offers the benefit of smaller size and faster processing at much lower power.

Lukaszew's team at William & Mary will be based in a lab in Small Hall and will include physicists Irina Novikova, Eugeniy Mikhailov, Seth Aubin and Bill Cooke. The team is expecting delivery this summer of a titanium-sapphire laser amplifier for optical characterization studies of VO2 and other materials that show promise for nanotech applications.

Purchase of the instrument was made possible by support from the Nanoelectronics Research Initiative (NRI), one of three research program entities of the Semiconductor Research Corporation. NRI is funded by major semiconductor companies, Micron Technology, Intel, IBM, Texas Instruments and GLOBALFOUNDRIES, as well as the National Institute of Standards and Technology (NIST).

The center is being established with starting grants from NRI and VMEC and matching funds from the three participating universities, for a total of nearly $1.7 million over two years. The center's projects are also funded by National Science Foundation and the Defense Advanced Research Projects Agency.

####

For more information, please click here

Contacts:
College of William and Mary
P.O. Box 8795
Williamsburg, VA 23187-8795
757-221-4000

Copyright © The College of William & Mary

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Academic/Education

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Nanoelectronics

Turning clothing into information displays September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Tools

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Military

Making nanowires from protein and DNA September 3rd, 2015

Seeing quantum motion August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Alliances/Trade associations/Partnerships/Distributorships

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic