Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > William & Mary joins Virginia Nanoelectronics Center

Lab work: Ale Lukaszew, William & Mary's VMEC Professor of Physics and Applied Science, works in her McGlothlin-Street Hall laboratory. Lukaszew will join a number of other Virginia researchers in ViNC—the newly formed Virginia Nanoelectronics Center. While ViNC is based at the University of Virginia, Lukaszew will lead a surface-characterization team in a new lab in Small Hall here at William & Mary.
Lab work: Ale Lukaszew, William & Mary's VMEC Professor of Physics and Applied Science, works in her McGlothlin-Street Hall laboratory. Lukaszew will join a number of other Virginia researchers in ViNC—the newly formed Virginia Nanoelectronics Center. While ViNC is based at the University of Virginia, Lukaszew will lead a surface-characterization team in a new lab in Small Hall here at William & Mary.

Abstract:
Vanadium dioxide—or VO2—is an interesting substance with a number of intriguing properties, including its propensity to switch from an insulator to a conductor at moderate temperatures.

William & Mary joins Virginia Nanoelectronics Center

Williamsburg, VA | Posted on May 26th, 2011

"One application that has been already thought for this material is to use it as a thermographic coating for windows," Ale Lukaszew said. "Because if you have a material that becomes a conductor above some temperature, it means that it becomes like all metals—a reflector of light."

VO2-coated windows become opaque and reflective when they get hot enough, keeping the sun and the heat out. "That's a nice feature of this material," she said, "but VO2 also has possibilities for less pedestrian applications."

Lukaszew, William & Mary's VMEC Professor of Physics and Applied Science, is leading a group studying VO2 and other materials that have interesting applications for nanoelectronics. The William & Mary group is part of a new industry-academia-government collaboration, the Virginia Nanoelectronics Center (ViNC). ViNC is based at the University of Virginia; the partnership also includes Old Dominion University.

ViNC was launched at a May 25 kickoff event in Charlottesville. Research at ViNC will serve as the foundation for producing faster, smaller and more affordable components in everything from mobile devices and computers to automobiles and energy-efficient homes.

"This is a fantastic example of the kind of R & D partnership that will help propel Virginia to the forefront of the innovation economy," said Jim Duffey, Virginia's secretary of technology.

ViNC will bring together world-class researchers to explore and develop advanced materials, novel devices and circuits at nanoscale dimensions. It will operate under the auspices of the U. Va. Institute for Nanoscale and Quantum Scientific and Technological Advanced Research, or nanoSTAR, based at U. Va. All three university partners have worked closely with Micron Technology, Inc., one of the world's leading providers of advanced semiconductor solutions with a memory chip manufacturing facility in Manassas, Va., to launch the new center.

"This new center is positioning Virginia at the heart of the development of a new nanoscale technology," said Stuart Wolf, director of nanoSTAR and ViNC. "This center could establish the Commonwealth as the ‘oxide hills' rather than a new ‘silicon valley.'"

Wolf will work closely with a number of co-principal investigators, including Lukaszew and her fellow VMEC Professors from U. Va. and ODU, Lloyd Harriott and Helmut Baumgart. The Commonwealth is supporting the new center through VMEC, the Virginia Microelectronics Consortium, a state-funded, industry-university consortium dedicated to the development of microelectronics in the state.

"Here at William & Mary, we can't say enough good things about Stu Wolf," said Dennis Manos, vice provost for research. " ViNC is going to be a wonderful collaboration and Stu is the guy who put it all together."

An important aspect of ViNC researchers' work will be the discovery and development of materials for advanced information technologies. Scientists generally agree that the fundamental limits of the current microelectronics technology—known as complementary metal oxide semiconductor, or CMOS—will be reached in about a decade. ViNC will develop novel devices and circuits for "beyond CMOS" nanoelectronics. The center's initial project is the development of information processing based on VO2 in place of traditional technologies. This approach offers the benefit of smaller size and faster processing at much lower power.

Lukaszew's team at William & Mary will be based in a lab in Small Hall and will include physicists Irina Novikova, Eugeniy Mikhailov, Seth Aubin and Bill Cooke. The team is expecting delivery this summer of a titanium-sapphire laser amplifier for optical characterization studies of VO2 and other materials that show promise for nanotech applications.

Purchase of the instrument was made possible by support from the Nanoelectronics Research Initiative (NRI), one of three research program entities of the Semiconductor Research Corporation. NRI is funded by major semiconductor companies, Micron Technology, Intel, IBM, Texas Instruments and GLOBALFOUNDRIES, as well as the National Institute of Standards and Technology (NIST).

The center is being established with starting grants from NRI and VMEC and matching funds from the three participating universities, for a total of nearly $1.7 million over two years. The center's projects are also funded by National Science Foundation and the Defense Advanced Research Projects Agency.

####

For more information, please click here

Contacts:
College of William and Mary
P.O. Box 8795
Williamsburg, VA 23187-8795
757-221-4000

Copyright © The College of William & Mary

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Tools

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Alliances/Trade associations/Partnerships/Distributorships

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

Leti Announces EU/South Korean Project for World’s First 5G-system Prototype: Coinciding with the 2018 Winter Games in PyeongChang, Korea, Prototype Will Be First Time State-of-the-art Terrestrial Wireless Communication Is Seamlessly Combined with Disruptive Satellite Communicati April 4th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project