Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Study helps explain behavior of latest high-temp superconductors: Rice University, Los Alamos physicists explain similar behavior by dissimilar compounds

Abstract:
A Rice University-led team of physicists this week offered up one of the first theoretical explanations of how two dissimilar types of high-temperature superconductors behave in similar ways.

Study helps explain behavior of latest high-temp superconductors: Rice University, Los Alamos physicists explain similar behavior by dissimilar compounds

Houston, TX | Posted on May 3rd, 2011

The research appears online this week in the journal Physical Review Letters. It describes how the magnetic properties of electrons in two dissimilar families of iron-based materials called "pnictides" (pronounced: NICK-tides) could give rise to superconductivity. One of the parent families of pnictides is a metal and was discovered in 2008; the other is an insulator and was discovered in late 2010. Experiments have shown that each material, if prepared in a particular way, can become a superconductor at roughly the same temperature. This has left theoretical physicists scrambling to determine what might account for the similar behavior between such different compounds.

Rice physicist Qimiao Si, the lead researcher on the new paper, said the explanation is tied to subtle differences in the way iron atoms are arranged in each material. The pnictides are laminates that contain layers of iron separated by layers of other compounds. In the newest family of insulating materials, Chinese scientists found a way to selectively remove iron atoms and leave an orderly pattern of "vacancies" in the iron layers.

Si, who learned about the discovery of the new insulating compounds during a visit to China in late December, suspected that the explanation for the similar behavior between the new and old compounds could lie in the collective way that electrons behave in each as they are cooled to the point of superconductivity. His prior work had shown that the arrangement of the iron atoms in the older materials could give rise to collective behavior of the magnetic moments, or "spins," of electrons. These collective behaviors, or "quasi-localizations," have been linked to high-temperature superconductivity in both pnictides and other high-temperature superconductors.

"The reason we got there first is we were in a position to really quickly incorporate the effect of vacancies in our model," Si said. "Intuitively, on my flight back (from China last Christmas), I was thinking through the calculations we should begin doing."

Si conducted the calculations and analyses with co-authors Rong Yu, postdoctoral research associate at Rice, and Jian-Xin Zhu, staff scientist at Los Alamos National Laboratory.

"We found that ordered vacancies enhance the tendency of the electrons to lock themselves some distance away from their neighbors in a pattern that physicists call 'Mott localization,' which gives rise to an insulating state," Yu said. "This is an entirely new route toward Mott localization."

By showing that merely creating ordered vacancies can prevent the material from being electrical conductors like their relatives, the researchers concluded that even the metallic parents of the iron pnictides are close to Mott localization.

"What we are learning by comparing the new materials with the older ones is that these quasi-localized spins and the interactions among them are crucial for superconductivity, and that's a lesson that can be potentially applied to tell experimentalists what is good for raising the transition temperature in new families of compounds," Zhu said.

Superconductivity occurs when electrons pair up and flow freely through a material without any loss of energy due to resistance. This most often occurs at extremely low temperatures, but compounds like the pnictides and others become superconductors at higher temperatures -- close to or above the temperature of liquid nitrogen -- which creates the possibility that they could be used on an industrial scale. One impediment to their broader use has been the struggle to precisely explain what causes them to become superconductors in the first place. The race to find that has been called the biggest mystery in modern physics.

"The new superconductors are arguably the most important iron-based materials that have been discovered since the initial discovery of iron pnictide high-temperature superconductors in 2008," Si said. "Our theoretical results provide a natural link between the new and old iron-based superconductors, thereby suggesting a universal origin of the superconductivity in these materials."

The research was funded by the National Science Foundation, the Robert A. Welch Foundation and the Department of Energy. It was facilitated by the International Collaborative Center on Quantum Matter, a collaborative entity Rice formed with partner institutions from China, Germany and United Kingdom.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Superconductivity

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

Drexel Researchers Open Path to Finding Rare, Polarized Metals April 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Discoveries

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Announcements

Imec Reports Four Percent Growth for 2013 Fiscal Year End —Continues to Accelerate Innovation Through Global Collaborations and Technological Breakthroughs in Nanoelectronics— April 24th, 2014

Multicapacity Microreactor for Catalyst Characterisation April 24th, 2014

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Research partnerships

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE