Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study helps explain behavior of latest high-temp superconductors: Rice University, Los Alamos physicists explain similar behavior by dissimilar compounds

Abstract:
A Rice University-led team of physicists this week offered up one of the first theoretical explanations of how two dissimilar types of high-temperature superconductors behave in similar ways.

Study helps explain behavior of latest high-temp superconductors: Rice University, Los Alamos physicists explain similar behavior by dissimilar compounds

Houston, TX | Posted on May 3rd, 2011

The research appears online this week in the journal Physical Review Letters. It describes how the magnetic properties of electrons in two dissimilar families of iron-based materials called "pnictides" (pronounced: NICK-tides) could give rise to superconductivity. One of the parent families of pnictides is a metal and was discovered in 2008; the other is an insulator and was discovered in late 2010. Experiments have shown that each material, if prepared in a particular way, can become a superconductor at roughly the same temperature. This has left theoretical physicists scrambling to determine what might account for the similar behavior between such different compounds.

Rice physicist Qimiao Si, the lead researcher on the new paper, said the explanation is tied to subtle differences in the way iron atoms are arranged in each material. The pnictides are laminates that contain layers of iron separated by layers of other compounds. In the newest family of insulating materials, Chinese scientists found a way to selectively remove iron atoms and leave an orderly pattern of "vacancies" in the iron layers.

Si, who learned about the discovery of the new insulating compounds during a visit to China in late December, suspected that the explanation for the similar behavior between the new and old compounds could lie in the collective way that electrons behave in each as they are cooled to the point of superconductivity. His prior work had shown that the arrangement of the iron atoms in the older materials could give rise to collective behavior of the magnetic moments, or "spins," of electrons. These collective behaviors, or "quasi-localizations," have been linked to high-temperature superconductivity in both pnictides and other high-temperature superconductors.

"The reason we got there first is we were in a position to really quickly incorporate the effect of vacancies in our model," Si said. "Intuitively, on my flight back (from China last Christmas), I was thinking through the calculations we should begin doing."

Si conducted the calculations and analyses with co-authors Rong Yu, postdoctoral research associate at Rice, and Jian-Xin Zhu, staff scientist at Los Alamos National Laboratory.

"We found that ordered vacancies enhance the tendency of the electrons to lock themselves some distance away from their neighbors in a pattern that physicists call 'Mott localization,' which gives rise to an insulating state," Yu said. "This is an entirely new route toward Mott localization."

By showing that merely creating ordered vacancies can prevent the material from being electrical conductors like their relatives, the researchers concluded that even the metallic parents of the iron pnictides are close to Mott localization.

"What we are learning by comparing the new materials with the older ones is that these quasi-localized spins and the interactions among them are crucial for superconductivity, and that's a lesson that can be potentially applied to tell experimentalists what is good for raising the transition temperature in new families of compounds," Zhu said.

Superconductivity occurs when electrons pair up and flow freely through a material without any loss of energy due to resistance. This most often occurs at extremely low temperatures, but compounds like the pnictides and others become superconductors at higher temperatures -- close to or above the temperature of liquid nitrogen -- which creates the possibility that they could be used on an industrial scale. One impediment to their broader use has been the struggle to precisely explain what causes them to become superconductors in the first place. The race to find that has been called the biggest mystery in modern physics.

"The new superconductors are arguably the most important iron-based materials that have been discovered since the initial discovery of iron pnictide high-temperature superconductors in 2008," Si said. "Our theoretical results provide a natural link between the new and old iron-based superconductors, thereby suggesting a universal origin of the superconductivity in these materials."

The research was funded by the National Science Foundation, the Robert A. Welch Foundation and the Department of Energy. It was facilitated by the International Collaborative Center on Quantum Matter, a collaborative entity Rice formed with partner institutions from China, Germany and United Kingdom.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Superconductivity

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Iron secrets behind superconductors unlocked July 7th, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Discoveries

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Research partnerships

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project