Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Intel, Micron Extend NAND Flash Technology Leadership, Introduce Industry’s Smallest, Most Advanced 20-Nanometer Process: New 20nm, 8-gigabyte Device Delivers Highest Capacity in Smallest Form Factor for Tablets, Smartphones, SSDs and Other Consumer and Compute Devices

Abstract:
NEWS HIGHLIGHTS

-Intel and Micron deliver industry's smallest, most advanced NAND flash process technology at 20nm.

-IM Flash Technologies leads the industry with 20nm process and quick transitions of the entire fab network.

-Measuring just 118mm2, the 8GB MLC NAND device provides high capacity for smartphones, tablets, SSDs and more.

Intel, Micron Extend NAND Flash Technology Leadership, Introduce Industry’s Smallest, Most Advanced 20-Nanometer Process: New 20nm, 8-gigabyte Device Delivers Highest Capacity in Smallest Form Factor for Tablets, Smartphones, SSDs and Other Consumer and Compute Devices

Santa Clara, CA and Boise, ID | Posted on April 15th, 2011

Intel Corporation and Micron Technology Inc. today introduced a new, finer 20-nanometer (nm) process technology for manufacturing NAND flash memory. The new 20nm process produces an 8-gigabyte (GB) multi-level cell (MLC) NAND flash device, providing a high-capacity, small form factor storage option for saving music, video, books and other data on smartphones, tablets and computing solutions such as solid-state drives (SSDs).

"Our innovation and growth opportunities continue with the 20nm NAND process, enabling Micron to deliver cost-effective, value-added solid-state storage solutions for our customers."
The growth in data storage combined with feature enhancements for tablets and smartphones is creating new demands for NAND flash technology, especially greater capacity in smaller designs. The new 20nm 8GB device measures just 118mm2 and enables a 30 to 40 percent reduction in board space (depending on package type) compared to the companies' existing 25nm 8GB NAND device. A reduction in the flash storage layout provides greater system level efficiency as it enables tablet and smartphone manufacturers to use the extra space for end-product improvements such as a bigger battery, larger screen or adding another chip to handle new features.

Manufactured by IM Flash Technologies (IMFT), Intel and Micron's NAND flash joint venture, the new 20nm 8GB device is a breakthrough in NAND process and technology design, further extending the companies' lithography leadership. Shrinking NAND lithography to this technology node is the most cost-effective method for increasing fab output, as it provides approximately 50 percent more gigabyte capacity from these factories when compared to current technology. The new 20nm process maintains similar performance and endurance as the previous generation 25nm NAND technology.

"Close customer collaboration is one of Micron's core values and through these efforts we are constantly uncovering compelling end-product design opportunities for NAND flash storage," said Glen Hawk, vice president of Micron's NAND Solutions Group. "Our innovation and growth opportunities continue with the 20nm NAND process, enabling Micron to deliver cost-effective, value-added solid-state storage solutions for our customers."

"Our goal is to enable instant, affordable access to the world's information," said Tom Rampone, vice president and general manager, Intel Non-Volatile Memory Solutions Group. "Industry-leading NAND gives Intel the ability to provide the highest quality and most cost-effective solutions to our customers, generation after generation. The Intel-Micron joint venture is a model for the manufacturing industry as we continue to lead the industry in process technology and make quick transitions of our entire fab network to smaller and smaller lithographies."

The 20nm, 8GB device is sampling now and expected to enter mass production in the second half of 2011. At that time, Intel and Micron also expect to unveil samples of a 16GB device, creating up to 128GBs of capacity in a single solid-state storage solution that is smaller than a U.S. postage stamp.

####

About Intel
Intel (NASDAQ: INTC) is a world leader in computing innovation. The company designs and builds the essential technologies that serve as the foundation for the world’s computing devices. Additional information about Intel is available at newsroom.intel.com and blogs.intel.com.

Intel and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

* Other names and brands may be claimed as the property of others.

©2011 Micron Technology, Inc. and Intel Corporation. All rights reserved. Information is subject to change without notice.

Micron and the Micron logo are trademarks of Micron Technology, Inc. This news release contains forward-looking statements regarding the production of the 20nm, 8GB and 16GB NAND device. Actual events or results may differ materially from those contained in the forward-looking statements. Please refer to the documents Micron files on a consolidated basis from time to time with the Securities and Exchange Commission, specifically Micron's most recent Form 10-K and Form 10-Q. These documents contain and identify important factors that could cause the actual results for Micron on a consolidated basis to differ materially from those contained in our forward-looking statements (see Certain Factors). Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

For more information, please click here

Contacts:
For Intel
Deborah Paquin
916-984-1921

or
Intel Corporation
Robert Manetta
408-653-3683

or
Micron Technology, Inc.
Kirstin Bordner
208-368-5487

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Kalam: versatility personified August 1st, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Memory Technology

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Better memory with faster lasers July 14th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Printing/Lithography/Inkjet/Inks

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

2015 Bulk Graphene Pricing Webinar:The Graphene Council to Host Webinar in Collaboration with Fullerex July 15th, 2015

Leti and EVG Launch INSPIRE, a Lithography Program Aimed At Demonstrating Benefits of Nano-imprint Technology July 15th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project