Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Berkeley Lab Researchers Create Next-Generation Chemical Mapping on the Nanoscale

Schematic of coaxial probe for imaging a carbon nanotube (left) and chemical map of carbon nanotube with chemical and topographical information at each pixel (right).
Schematic of coaxial probe for imaging a carbon nanotube (left) and chemical map of carbon nanotube with chemical and topographical information at each pixel (right).

Abstract:
A pixel is worth a thousand words? Not exactly how the saying goes, but in this case, it holds true: scientists at Berkeley Lab's Molecular Foundry have pioneered a new chemical mapping method that provides unprecedented insight into materials at the nanoscale. Moving beyond traditional static imaging techniques, which provide a snapshot in time, these new maps will guide researchers in deciphering molecular chemistry and interactions at the nanoscale—critical for artificial photosynthesis, biofuels production and light-harvesting applications such as solar cells.

Berkeley Lab Researchers Create Next-Generation Chemical Mapping on the Nanoscale

Berkeley, CA | Posted on March 28th, 2011

"This new technique allows us to capture very high-resolution images of nanomaterials with a huge amount of physical and chemical information at each pixel," says Alexander Weber-Bargioni, a postdoctoral scholar in the Imaging and Manipulation of Nanostructures Facility at the Foundry. "Usually when you take an image, you just get a picture of what this material looks like, but nothing more. With our method, we can now gain information about the functionality of a nanostructure with rich detail."

The Molecular Foundry is a U.S. Department of Energy (DOE) Office of Science nanoscience center and national user facility. With the Foundry's state-of-the-art focused ion beam tool at their disposal, Weber-Bargioni and his team designed and fabricated a coaxial antenna capable of focusing light at the nanoscale, - a harnessing of light akin to wielding a sharp knife in a thunderstorm, Weber-Bargioni says.

Consisting of gold wrapped around a silicon nitride atomic force microscope tip, this coaxial antenna serves as an optical probe for structures with nanometer resolution for several hours at a time. What's more, unlike other scanning probe tips, it provides enough enhancement, or light intensity, to report the chemical fingerprint at each pixel while collecting an image (typically 256 x 256 pixels). This data is then used to generate multiple composition-related "maps," each with a wealth of chemical information at every pixel, at a resolution of just twenty nanometers. The maps provide information that is critical for examining nanomaterials, in which local surface chemistry and interfaces dominate behavior.

"Fabricating reproducible near-field optical microscopy probes has always been a challenge," says Frank Ogletree, acting Facility Director of the Imaging and Manipulation of Nanostructures Facility at the Foundry. "We now have a high-yield method to make engineered plasmonic probes for spectroscopy on a variety of surfaces."

To test out the capability of their new probe, the team examined carbon nanotubes, sheets of carbon atoms rolled tightly into tubes just a few nanometers in diameter. Carbon nanotubes are ideal for this type of interactive investigation as their unmatched electronic and structural properties are sensitive to localized chemical changes.

Users coming to the Molecular Foundry to seek information about light-harvesting materials or any dynamic system should benefit from this imaging system, Weber-Bargioni says.

Adds Jim Schuck, staff scientist in the Imaging and Manipulation of Nanostructures Facility at the Foundry, "We're very excited—this new nano-optics capability enables us to explore previously inaccessible properties within nanosystems. The work reflects a major strength of the Molecular Foundry, where collaboration between scientists with complementary expertise leads to real nanoscience breakthroughs."

A paper reporting this research titled, "Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes," appears in Nano Letters and is available to subscribers online. Co-authoring the paper with Weber-Bargioni, Ogletree and Schuck were Adam Schwartzberg, Matteo Cornaglia, Ariel Ismach, Jeffrey Urban, Yuanjie Pang, Reuven Gordon, Jeffrey Bokor, Miquel Salmeron, Paul Ashby and Stefano Cabrini.

This work at the Molecular Foundry was supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://nano.energy.gov.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Quantum calculations broaden the understanding of crystal catalysts: Quantum mechanics and a supercomputer help scientists to identify the position of atoms on the surface of rutile June 22nd, 2016

Droplets finally all the same size -- in a nanodroplet library June 20th, 2016

Laboratories

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discovery of gold nanocluster 'double' hints at other shape-changing particles: New analysis approach brings two unique atomic structures into focus June 19th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Discoveries

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Announcements

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

New-Contracts/Sales/Customers

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Nanometrics Selected for Third-Generation 3D-NAND Process Control: Atlas® Systems Extend Advanced Device Manufacturing Capability June 14th, 2016

Industrial Nanotech, Inc. Signs Agreement With and Receives First Purchase Order from Major New Customer in China June 6th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic