Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Berkeley Lab Researchers Create Next-Generation Chemical Mapping on the Nanoscale

Schematic of coaxial probe for imaging a carbon nanotube (left) and chemical map of carbon nanotube with chemical and topographical information at each pixel (right).
Schematic of coaxial probe for imaging a carbon nanotube (left) and chemical map of carbon nanotube with chemical and topographical information at each pixel (right).

Abstract:
A pixel is worth a thousand words? Not exactly how the saying goes, but in this case, it holds true: scientists at Berkeley Lab's Molecular Foundry have pioneered a new chemical mapping method that provides unprecedented insight into materials at the nanoscale. Moving beyond traditional static imaging techniques, which provide a snapshot in time, these new maps will guide researchers in deciphering molecular chemistry and interactions at the nanoscale—critical for artificial photosynthesis, biofuels production and light-harvesting applications such as solar cells.

Berkeley Lab Researchers Create Next-Generation Chemical Mapping on the Nanoscale

Berkeley, CA | Posted on March 28th, 2011

"This new technique allows us to capture very high-resolution images of nanomaterials with a huge amount of physical and chemical information at each pixel," says Alexander Weber-Bargioni, a postdoctoral scholar in the Imaging and Manipulation of Nanostructures Facility at the Foundry. "Usually when you take an image, you just get a picture of what this material looks like, but nothing more. With our method, we can now gain information about the functionality of a nanostructure with rich detail."

The Molecular Foundry is a U.S. Department of Energy (DOE) Office of Science nanoscience center and national user facility. With the Foundry's state-of-the-art focused ion beam tool at their disposal, Weber-Bargioni and his team designed and fabricated a coaxial antenna capable of focusing light at the nanoscale, - a harnessing of light akin to wielding a sharp knife in a thunderstorm, Weber-Bargioni says.

Consisting of gold wrapped around a silicon nitride atomic force microscope tip, this coaxial antenna serves as an optical probe for structures with nanometer resolution for several hours at a time. What's more, unlike other scanning probe tips, it provides enough enhancement, or light intensity, to report the chemical fingerprint at each pixel while collecting an image (typically 256 x 256 pixels). This data is then used to generate multiple composition-related "maps," each with a wealth of chemical information at every pixel, at a resolution of just twenty nanometers. The maps provide information that is critical for examining nanomaterials, in which local surface chemistry and interfaces dominate behavior.

"Fabricating reproducible near-field optical microscopy probes has always been a challenge," says Frank Ogletree, acting Facility Director of the Imaging and Manipulation of Nanostructures Facility at the Foundry. "We now have a high-yield method to make engineered plasmonic probes for spectroscopy on a variety of surfaces."

To test out the capability of their new probe, the team examined carbon nanotubes, sheets of carbon atoms rolled tightly into tubes just a few nanometers in diameter. Carbon nanotubes are ideal for this type of interactive investigation as their unmatched electronic and structural properties are sensitive to localized chemical changes.

Users coming to the Molecular Foundry to seek information about light-harvesting materials or any dynamic system should benefit from this imaging system, Weber-Bargioni says.

Adds Jim Schuck, staff scientist in the Imaging and Manipulation of Nanostructures Facility at the Foundry, "We're very excited—this new nano-optics capability enables us to explore previously inaccessible properties within nanosystems. The work reflects a major strength of the Molecular Foundry, where collaboration between scientists with complementary expertise leads to real nanoscience breakthroughs."

A paper reporting this research titled, "Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes," appears in Nano Letters and is available to subscribers online. Co-authoring the paper with Weber-Bargioni, Ogletree and Schuck were Adam Schwartzberg, Matteo Cornaglia, Ariel Ismach, Jeffrey Urban, Yuanjie Pang, Reuven Gordon, Jeffrey Bokor, Miquel Salmeron, Paul Ashby and Stefano Cabrini.

This work at the Molecular Foundry was supported by DOE's Office of Science.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://nano.energy.gov.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world’s most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

Simulations lead to design of near-frictionless material July 21st, 2015

Chemistry

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

Spintronics just got faster July 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Nanotubes/Buckyballs/Fullerenes

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nano-C Receives EPA Approvals for Single Walled Carbon Nanotubes July 21st, 2015

Global Carbon Nanotube Industry 2015 Market Research Report July 20th, 2015

Old astronomic riddle on the way to be solved July 16th, 2015

Discoveries

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Energy

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

New-Contracts/Sales/Customers

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Centre for Process Innovation pilots Beneq’s breakthrough roll-to-roll ALD system for moisture barrier films June 3rd, 2015

Solar/Photovoltaic

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Perovskite solar technology shows quick energy returns: New technology beats current solar panel technology in life-cycle energy assessment July 20th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project