Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Spray-on Solar Panels

Energy generated from renewable sources has long promised to satisfy demands for more and cleaner electricity. Because renewable sources, such as sunlight and wind, can produce greatly fluctuating amounts of energy, they are most effectual when excess energy can be stored until it's needed. Credit: Prof. Gutierrez/Prof. Hermanovicz/Prof. Lee, University of California-Berkeley
Energy generated from renewable sources has long promised to satisfy demands for more and cleaner electricity. Because renewable sources, such as sunlight and wind, can produce greatly fluctuating amounts of energy, they are most effectual when excess energy can be stored until it's needed. Credit: Prof. Gutierrez/Prof. Hermanovicz/Prof. Lee, University of California-Berkeley

Abstract:
Getting a charge out of solar "paint"

Spray-on Solar Panels

Arlington, VA | Posted on February 15th, 2011

Have you seen those big, bulky, breakable photovoltaic cells that now collect the sun's rays? Well, what if solar energy could be harnessed using tiny collectors that could be spray painted on a roof, a wall or even a window?

The science of converting sunlight into electrical energy is more than a century old, but the reality of doing it efficiently and affordably is ongoing.

"Not only does it involve fundamental science in terms of physics and chemistry, and in some cases biology, but there are major engineering challenges as well," notes Brian Korgel, a nanomaterials chemist at the University of Texas at Austin.

Korgel and his colleagues are a new breed of chemical engineers, looking for answers to the world's big problems.

"There was a time where the field of chemical engineering had a reputation of being really conservative. You'd get your degree in chemical engineering, and you'd work for a chemical plant with a hard hat or in a giant refinery," says Korgel.

That's no longer the only option.

"Chemical engineers are now able to take these new chemicals, like nanomaterials, and we're trying to create the technologies that can meet the global challenge of, say, energy sustainability. We're taking chemistry, we're inventing new ways to actually make materials that can't be made any other way," he continues.

With support from the National Science Foundation (NSF), that's what Korgel and his team are doing to create solar cells that are light, flexible, efficient and--often the biggest obstacle--affordable.

"It's challenging to get high efficiencies of conversion. For example, the basic single junction solar cell is fundamentally limited to an efficiency of 30 percent. So, if you made a perfect solar cell, the highest efficiency would be 30 percent," explains Korgel at his Austin lab.

Currently, manufacturing cells with anything near that level of efficiency requires high heat, a vacuum and is very expensive. Korgel's approach, using nanotechnology, is completely different.

"What we're doing right now in my research group is making nanocrystals. We're focused on 'CIGS'--copper, indium, gallium, selenide--and we make small particles of this inorganic material that we can disperse in a solvent, creating an ink or paint," he says.

This solar "paint" would have the same function as the large photovoltaic (PV) solar collectors on buildings and "solar farms" around the world.

Korgel describes the tiny collection devices as a "solar sandwich."

"So these devices are 'sandwiches,' where you have the metal contact on the bottom and metal contact on the top to extract the charge out; and the middle part is the part that absorbs out the light," explains Korgel.

This paint, made of the CIGS nanocrystals, can be sprayed on plastic, glass and even fabric to create a solar cell.

"So what we're able to do is create radically new ways of depositing inorganic films to make solar cells, and so we're trying to meet this challenge of much lower cost of manufacturing," he says.

One way to create these cells on a very large scale would be to print them on thin, flexible sheets, the same way huge presses now print newspapers. "And the final product would ideally look something like today's shingles," says Vahid Akhavan, one of Korgel's graduate research assistants. "You want to produce something that is very user friendly. So you could go to your local hardware store, buy them and install them on your roof."

These shingles would do double duty, generating electricity while serving as roofing material. They would be also stand up better in bad weather, such as hail and windstorms, than some of today's more fragile solar collectors.

A lot of challenges need to be conquered before solar energy becomes so commonplace. High on that list is improving the efficiency of these nanomaterial cells. "Right now, we have made devices that have an efficiency of 3 percent, and to be commercial, you really need to be at 10 percent," says Korgel. "But I think we can get to 10 percent. Those are just engineering challenges; they are not necessarily easy, but they are not fundamental roadblocks."

Depending on what part of the world is looking to transition to solar energy, that improved efficiency is critical.

"I did my post-doc in Dublin, Ireland, so I know cloudy days with five hours of sunlight," says Korgel. "So if you want to use solar, you need to have efficient devices that can harvest the sun under those conditions."

Another obstacle will be determining what raw materials can be used if this technology can be mass produced. The copper, indium, gallium, and selenide are not all cheap or readily available.

"Ultimately, thinking much further out, you want to go with a technology where you use elements that are earth-abundant," says Korgel.

One possibility is silicon, which is made from sand, abundant across our planet. But extracting the silicon from the sand is now an incredibly energy-intensive process and the chemicals it takes to do that are pretty harsh on the environment.

Korgel, his students and colleagues see all those problems as having answers. And he's also motivated by non-scientists eager to wean the world from diminishing fossil fuels.

"Everyone realizes this is a major problem, and so many people want to see it solved and are incredibly enthusiastic and supportive of the scientific and engineering community. And it's inspiring," says Korgel. "What it's given me is a deep appreciation of how important this problem of meeting energy sustainability is. It drives you further on to try and meet that need."

The Korgel lab is also investigating medical uses for nanomaterials. "These nanomaterials have unique properties. They might be fluorescent and give off light, they can be magnetically responsive. If you shine light on them, they can generate heat. So you can take all of these unique properties, and then they're so small that they can flow around in your bloodstream and get into organs," he says.

For example, a nano probe could detect a cancer cell and then deliver the medicine to kill it. "So, if you could come up with a nanoscopic unit that could detect a variety of different types of cancers or different diseases and then carry out a therapy of some sort, that would be a big deal," he says.

####

For more information, please click here

Copyright © NSF

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Videos/Movies

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Environment

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Energy

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

Solar/Photovoltaic

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Material Allows for Ultra-Thin Solar Cells August 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE