Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spray-on Solar Panels

Energy generated from renewable sources has long promised to satisfy demands for more and cleaner electricity. Because renewable sources, such as sunlight and wind, can produce greatly fluctuating amounts of energy, they are most effectual when excess energy can be stored until it's needed. Credit: Prof. Gutierrez/Prof. Hermanovicz/Prof. Lee, University of California-Berkeley
Energy generated from renewable sources has long promised to satisfy demands for more and cleaner electricity. Because renewable sources, such as sunlight and wind, can produce greatly fluctuating amounts of energy, they are most effectual when excess energy can be stored until it's needed. Credit: Prof. Gutierrez/Prof. Hermanovicz/Prof. Lee, University of California-Berkeley

Abstract:
Getting a charge out of solar "paint"

Spray-on Solar Panels

Arlington, VA | Posted on February 15th, 2011

Have you seen those big, bulky, breakable photovoltaic cells that now collect the sun's rays? Well, what if solar energy could be harnessed using tiny collectors that could be spray painted on a roof, a wall or even a window?

The science of converting sunlight into electrical energy is more than a century old, but the reality of doing it efficiently and affordably is ongoing.

"Not only does it involve fundamental science in terms of physics and chemistry, and in some cases biology, but there are major engineering challenges as well," notes Brian Korgel, a nanomaterials chemist at the University of Texas at Austin.

Korgel and his colleagues are a new breed of chemical engineers, looking for answers to the world's big problems.

"There was a time where the field of chemical engineering had a reputation of being really conservative. You'd get your degree in chemical engineering, and you'd work for a chemical plant with a hard hat or in a giant refinery," says Korgel.

That's no longer the only option.

"Chemical engineers are now able to take these new chemicals, like nanomaterials, and we're trying to create the technologies that can meet the global challenge of, say, energy sustainability. We're taking chemistry, we're inventing new ways to actually make materials that can't be made any other way," he continues.

With support from the National Science Foundation (NSF), that's what Korgel and his team are doing to create solar cells that are light, flexible, efficient and--often the biggest obstacle--affordable.

"It's challenging to get high efficiencies of conversion. For example, the basic single junction solar cell is fundamentally limited to an efficiency of 30 percent. So, if you made a perfect solar cell, the highest efficiency would be 30 percent," explains Korgel at his Austin lab.

Currently, manufacturing cells with anything near that level of efficiency requires high heat, a vacuum and is very expensive. Korgel's approach, using nanotechnology, is completely different.

"What we're doing right now in my research group is making nanocrystals. We're focused on 'CIGS'--copper, indium, gallium, selenide--and we make small particles of this inorganic material that we can disperse in a solvent, creating an ink or paint," he says.

This solar "paint" would have the same function as the large photovoltaic (PV) solar collectors on buildings and "solar farms" around the world.

Korgel describes the tiny collection devices as a "solar sandwich."

"So these devices are 'sandwiches,' where you have the metal contact on the bottom and metal contact on the top to extract the charge out; and the middle part is the part that absorbs out the light," explains Korgel.

This paint, made of the CIGS nanocrystals, can be sprayed on plastic, glass and even fabric to create a solar cell.

"So what we're able to do is create radically new ways of depositing inorganic films to make solar cells, and so we're trying to meet this challenge of much lower cost of manufacturing," he says.

One way to create these cells on a very large scale would be to print them on thin, flexible sheets, the same way huge presses now print newspapers. "And the final product would ideally look something like today's shingles," says Vahid Akhavan, one of Korgel's graduate research assistants. "You want to produce something that is very user friendly. So you could go to your local hardware store, buy them and install them on your roof."

These shingles would do double duty, generating electricity while serving as roofing material. They would be also stand up better in bad weather, such as hail and windstorms, than some of today's more fragile solar collectors.

A lot of challenges need to be conquered before solar energy becomes so commonplace. High on that list is improving the efficiency of these nanomaterial cells. "Right now, we have made devices that have an efficiency of 3 percent, and to be commercial, you really need to be at 10 percent," says Korgel. "But I think we can get to 10 percent. Those are just engineering challenges; they are not necessarily easy, but they are not fundamental roadblocks."

Depending on what part of the world is looking to transition to solar energy, that improved efficiency is critical.

"I did my post-doc in Dublin, Ireland, so I know cloudy days with five hours of sunlight," says Korgel. "So if you want to use solar, you need to have efficient devices that can harvest the sun under those conditions."

Another obstacle will be determining what raw materials can be used if this technology can be mass produced. The copper, indium, gallium, and selenide are not all cheap or readily available.

"Ultimately, thinking much further out, you want to go with a technology where you use elements that are earth-abundant," says Korgel.

One possibility is silicon, which is made from sand, abundant across our planet. But extracting the silicon from the sand is now an incredibly energy-intensive process and the chemicals it takes to do that are pretty harsh on the environment.

Korgel, his students and colleagues see all those problems as having answers. And he's also motivated by non-scientists eager to wean the world from diminishing fossil fuels.

"Everyone realizes this is a major problem, and so many people want to see it solved and are incredibly enthusiastic and supportive of the scientific and engineering community. And it's inspiring," says Korgel. "What it's given me is a deep appreciation of how important this problem of meeting energy sustainability is. It drives you further on to try and meet that need."

The Korgel lab is also investigating medical uses for nanomaterials. "These nanomaterials have unique properties. They might be fluorescent and give off light, they can be magnetically responsive. If you shine light on them, they can generate heat. So you can take all of these unique properties, and then they're so small that they can flow around in your bloodstream and get into organs," he says.

For example, a nano probe could detect a cancer cell and then deliver the medicine to kill it. "So, if you could come up with a nanoscopic unit that could detect a variety of different types of cancers or different diseases and then carry out a therapy of some sort, that would be a big deal," he says.

####

For more information, please click here

Copyright © NSF

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Videos/Movies

Graphene under pressure August 26th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Argonne discovery yields self-healing diamond-like carbon August 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Possible Futures

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Announcements

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Environment

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic