Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Polymer membranes with molecular-sized channels assemble themselves

Image (a) is an AFM image of a polymer membrane whose dark core corresponds to organic nanotubes. (b) is a TEM showing a sub-channeled membrane with the organic nanotubes circled in red. Inset shows zoomed-in image of a single nanotube. Credit: Image from Ting Xu
Image (a) is an AFM image of a polymer membrane whose dark core corresponds to organic nanotubes. (b) is a TEM showing a sub-channeled membrane with the organic nanotubes circled in red. Inset shows zoomed-in image of a single nanotube. Credit: Image from Ting Xu

Abstract:
Many futurists envision a world in which polymer membranes with molecular-sized channels are used to capture carbon, produce solar-based fuels, or desalinating sea water, among many other functions. This will require methods by which such membranes can be readily fabricated in bulk quantities. A technique representing a significant first step down that road has now been successfully demonstrated.

Polymer membranes with molecular-sized channels assemble themselves

Berkeley, CA | Posted on January 12th, 2011

Researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have developed a solution-based method for inducing the self-assembly of flexible polymer membranes with highly aligned subnanometer channels. Fully compatible with commercial membrane-fabrication processes, this new technique is believed to be the first example of organic nanotubes fabricated into a functional membrane over macroscopic distances.

"We've used nanotube-forming cyclic peptides and block co-polymers to demonstrate a directed co-assembly technique for fabricating subnanometer porous membranes over macroscopic distances," says Ting Xu, a polymer scientist who led this project. "This technique should enable us to generate porous thin films in the future where the size and shape of the channels can be tailored by the molecular structure of the organic nanotubes."

Xu, who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California Berkeley's Departments of Materials Sciences and Engineering, and Chemistry, is the lead author of a paper describing this work, which has been published in the journal ACS Nano. The paper is titled "Subnanometer Porous Thin Films by the Co-assembly of Nanotube Subunits and Block Copolymers."

Co-authoring the paper with Xu were Nana Zhao, Feng Ren, Rami Hourani, Ming Tsang Lee, Jessica Shu, Samuel Mao, and Brett Helms, who is with the Molecular Foundry, a DOE nanoscience center hosted at Berkeley Lab.

Channeled membranes are one of nature's most clever and important inventions. Membranes perforated with subnanometer channels line the exterior and interior of a biological cell, controlling - by virtue of size - the transport of essential molecules and ions into, through, and out of the cell. This same approach holds enormous potential for a wide range of human technologies, but the challenge has been finding a cost-effective means of orienting vertically-aligned subnanometer channels over macroscopic distances on flexible substrates.

"Obtaining molecular level control over the pore size, shape, and surface chemistry of channels in polymer membranes has been investigated across many disciplines but has remained a critical bottleneck," Xu says. "Composite films have been fabricated using pre-formed carbon nanotubes and the field is making rapid progess, however, it still presents a challenge to orient pre-formed nanotubes normal to the film surface over macroscopic distances."

For their subnanometer channels, Xu and her research group used the organic nanotubes naturally formed by cyclic peptides - polypeptide protein chains that connect at either end to make a circle. Unlike pre-formed carbon nanotubes, these organic nanotubes are "reversible," which means their size and orientation can be easily modified during the fabrication process. For the membrane, Xu and her collaborators used block copolymers - long sequences or "blocks" of one type of monomer molecule bound to blocks of another type of monomer molecule. Just as cyclic peptides self-assemble into nanotubes, block copolymers self-assemble into well-defined arrays of nanostructures over macroscopic distances. A polymer covalently linked to the cyclic peptide was used as a "mediator" to bind together these two self-assembling systems

"The polymer conjugate is the key," Xu says. "It controls the interface between the cyclic peptides and the block copolymers and synchronizes their self-assembly. The result is that nanotube channels only grow within the framework of the polymer membrane. When you can make everything work together this way, the process really becomes very simple."

Xu and her colleagues were able to fabricate subnanometer porous membranes measuring several centimeters across and featuring high-density arrays of channels. The channels were tested via gas transport measurements of carbon dioxide and neopentane. These tests confirmed that permeance was higher for the smaller carbon dioxide molecules than for the larger molecules of neopentane. The next step will be to use this technique to make thicker membranes.

"Theoretically, there are no size limitations for our technique so there should be no problem in making membranes over large area," Xu says. "We're excited because we believe this demonstrates the feasibility of synchronizing multiple self-assembly processes by tailoring secondary interactions between individual components. Our work opens a new avenue to achieving hierarchical structures in a multicomponent system simultaneously, which in turn should help overcome the bottleneck to achieving functional materials using a bottom-up approach."

This research was supported by DOE's Office of Science and by the U.S. Army Research Office. Measurements were carried out on beamlines at Berkeley Lab's Advanced Light Source and at the Advanced Photon Source of Argonne National Laboratory.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science. Berkeley Lab provides solutions to the world's most urgent scientific challenges including sustainable energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives through team science, advanced computing, and innovative technology. Visit our at www.lbl.gov

For more information, please click here

Contacts:
Lynn Yarris

510-486-5375

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Thin films

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Researchers develop nanoparticle films for high-density data storage: April 3rd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Possible Futures

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Environment

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Water

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Solar/Photovoltaic

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project